Marsden J.E. Hamiltonian reduction by stages (Berlin, 2007). - ОГЛАВЛЕНИЕ / CONTENTS
Навигация

 
Выставка новых поступлений  |  Поступления иностранных книг в библиотеки СО РАН : 2003 | 2006 |2008
ОбложкаMarsden J.E. Hamiltonian reduction by stages / Marsden J.E., Misiolek G., Ortega J.P. et al. - Berlin: Springer, 2007. - 519 p. - (Lecture notes in mathematics; Vol. 1913). - ISSN 0075-8434; ISBN 978-3-540-72469-8
 

Место хранения: 013 | Институт математики СО РАН | Новосибирск | Библиотека

Оглавление / Contents
 
Part I:   Background and the Problem Setting .................... 1

1.  Symplectic Reduction ........................................ 3
    1.1.  Introduction to Symplectic Reduction .................. 3
    1.2.  Symplectic Reduction - Proofs and Further Details .... 12
    1.3.  Reduction Theory: Historical Overview ................ 24
    1.4.  Overview of Singular Symplectic Reduction ............ 36

2.  Cotangent Bundle Reduction ................................. 43
    2.1.  Principal Bundles and Connections .................... 43
    2.2.  Cotangent Bundle Reduction: Embedding Version ........ 59
    2.3.  Cotangent Bundle Reduction: Bundle Version ........... 71
    2.4.  Singular Cotangent Bundle Reduction .................. 88

3.  The Problem Setting ....................................... 101
    3.1.  The Setting for Reduction by Stages ................. 101
    3.2.  Applications and Infinite Dimensional Problems ...... 106

Part II:  Regular Symplectic Reduction by Stages .............. 111

4.  Commuting Reduction and Semidirect Product Theory ......... 113
    4.1.  Commuting Reduction ................................. 113
    4.2.  Semidirect Products ................................. 119
    4.3.  Cotangent Bundle Reduction and Semidirect
          Products ............................................ 132
    4.4.  Example: The Euclidean Group ........................ 137

5.  Regular Reduction by Stages ............................... 143
    5.1.  Motivating Example: The Heisenberg Group ............ 144
    5.2.  Point Reduction by Stages ........................... 149
    5.3.  Poisson and Orbit Reduction by Stages ............... 171

6.  Group Extensions and the Stages Hypothesis ................ 177
    6.1.  Lie Group and Lie Algebra Extensions ................ 178
    6.2.  Central Extensions .................................. 198
    6.3.  Group Extensions Satisfy the Stages Hypotheses ...... 201
    6.4.  The Semidirect Product of Two Groups ................ 204

7.  Magnetic Cotangent Bundle Reduction ....................... 211
    7.1.  Embedding Magnetic Cotangent Bundle Reduction ....... 212
    7.2.  Magnetic Lie-Poisson and Orbit Reduction ............ 225

8.  Stages and Coadjoint Orbits of Central Extensions ......... 239
    8.1.  Stage One Reduction for Central Extensions .......... 240
    8.2.  Reduction by Stages for Central Extensions .......... 245

9.  Examples .................................................. 251
    9.1.  The Heisenberg Group Revisited ...................... 252
    9.2.  A Central Extension of fig.1(S1) ........................ 253
    9.3.  The Oscillator Group ................................ 259
    9.4.  Bott-Virasoro Group ................................. 267
    9.5.  Fluids with a Spatial Symmetry ...................... 279

10. Stages and Semidirect Products with Cocycles .............. 285
    10.1. Abelian Semidirect Product Extensions: First
          Reduction ........................................... 286
    10.2. Abelian Semidirect Product Extensions:
          Coadjoint Orbits .................................... 295
    10.3. Coupling to a Lie Group ............................. 304
    10.4. Poisson Reduction by Stages: General
          Semidirect Products ................................. 309
    10.5. First Stage Reduction: General Semidirect
          Products ............................................ 315
    10.6. Second Stage Reduction: General Semidirect
          Products ............................................ 321
    10.7. Example: The Group fig.2 ............................ 347

11. Reduction by Stages via Symplectic Distributions .......... 397
    11.1. Reduction by Stages of Connected Components ......... 398
    11.2. Momentum Level Sets and Distributions ............... 401
    11.3. Proof: Reduction by Stages II ....................... 406

12. Reduction by Stages with Topological Conditions ........... 409
    12.1. Reduction by Stages III ............................. 409
    12.2. Relation Between Stages II and III .................. 416
    12.3. Connected Components of Reduced Spaces .............. 419
    Conclusions for Part 1 .................................... 420

Part III: Optimal Reduction and Singular Reduction by
          Stages, by Juan-Pablo Ortega ........................ 421

13. The Optimal Momentum Map and Point Reduction .............. 423
    13.1. Optimal Momentum Map and Space ...................... 423
    13.2. Momentum Level Sets and Associated Isotropics ....... 426
    13.3. Optimal Momentum Map Dual Pair ...................... 427
    13.4. Dual Pairs, Reduced Spaces, and Symplectic Leaves ... 430
    13.5. Optimal Point Reduction ............................. 432
    13.6. The Symplectic Case and Sjamaar's Principle ......... 435

14. Optimal Orbit Reduction ................................... 437
    14.1. The Space for Optimal Orbit Reduction ............... 437
    14.2. The Symplectic Orbit Reduction Quotient ............. 443
    14.3. The Polar Reduced Spaces ............................ 446
    14.4. Symplectic Leaves and the Reduction Diagram ......... 454
    14.5. Orbit Reduction: Beyond Compact Groups .............. 455
    14.6. Examples: Polar Reduction of the Coadjoint Action ... 457

15. Optimal Reduction by Stages ............................... 461
    15.1. The Polar Distribution of a Normal Subgroup ......... 461
    15.2. Isotropy Subgroups and Quotient Groups .............. 464
    15.3. The Optimal Reduction by Stages Theorem ............. 466
    15.4. Optimal Orbit Reduction by Stages ................... 470
    15.5. Reduction by Stages of Globally Hamiltonian
          Actions ............................................. 475
    Acknowledgments for Part III .............................. 481

Bibliography .................................................. 483

Index ......................................................... 509


 
Выставка новых поступлений  |  Поступления иностранных книг в библиотеки СО РАН : 2003 | 2006 |2008
 

[О библиотеке | Академгородок | Новости | Выставки | Ресурсы | Библиография | Партнеры | ИнфоЛоция | Поиск]
  © 1997–2024 Отделение ГПНТБ СО РАН  

Документ изменен: Wed Feb 27 14:52:18 2019. Размер: 9,900 bytes.
Посещение N 1126 c 26.04.2010