Krabs W. Modelling, analysis and optimization of biosystems (Berlin, 2007). - ОГЛАВЛЕНИЕ / CONTENTS
Навигация

 
Выставка новых поступлений  |  Поступления иностранных книг в библиотеки СО РАН : 2003 | 2006 |2008
ОбложкаKrabs W. Modelling, analysis and optimization of biosystems / Krabs W., Pickl S.W. - Berlin: Springer, 2007. - 203 p. - ISBN 9783540714521
 

Место хранения: 013 | Институт математики СО РАН | Новосибирск | Библиотека

Оглавление / Contents
 
Preface ......................................................... V

1. Growth Models ................................................ 1
   1.1. A Growth Model for one Population ....................... 1
   1.2. Interacting Growth of two Populations ................... 9
   1.3. Interacting Growth of n ≥ 2 Populations ................ 15
   1.4. Discretization of the Time-Continuous Model ............ 23
        1.4.1. The n-Population Model .......................... 23
        1.4.2. The One-Population Model ........................ 33
   1.5. Determination of Model Parameters from Data ............ 36
   References .................................................. 39

2. A Game-Theoretic Evolution Model ............................ 41
   2.1. Evolution-Matrix-Games for one Population .............. 41
        2.1.1. The Game and Evolutionarily Stable Equilibria ... 41
        2.1.2. Characterization of Evolutionarily Stable
               Equilibria ...................................... 45
        2.1.3. Evolutionarily Stable Equilibria for
               2x2-Matrices .................................... 50
        2.1.4. On the Detection of Evolutionarily Stable
               Equilibria ...................................... 52
        2.1.5. A Dynamical Treatment of the Game ............... 57
        2.1.6. Existence and Iterative Calculation of
               Nash Equilibria ................................. 62
        2.1.7. Zero-Sum Evolution Matrix Games ................. 74
   2.2. Evolution-Bi-Matrix-Games for two Populations .......... 79
        2.2.1. The Game and Evolutionarily Stable
               Equilibria ...................................... 79
        2.2.2. A Dynamical Treatment of the Game ............... 83
        2.2.3. Existence and Iterative Calculation of
               Nash Equilibria ................................. 88
        2.2.4. A Direct Method for the Calculation of
               Nash Equilibria ................................. 93
References .................................................... 102

3. Four Models of Optimal Control in Medicine ................. 103
   3.1. Controlled Growth of Cancer Cells ..................... 103
   3.2. Optimal Administration of Drugs ....................... 111
        3.2.1. A One-Compartment Model ........................ 112
        3.2.2. A Two-Compartment Model ........................ 114
   3.3. Optimal Control of Diabetes Mellitus .................. 119
        3.3.1. The Model ...................................... 119
        3.3.2. On the Approximate Solution of the Model
               Problem ........................................ 121
        3.3.3. A Time-Discrete Diabetes Model ................. 124
        3.3.4. An Exact Solution of the Model Problem ......... 127
   3.4. Optimal Control Aspects of the Blood Circulation
        in the Heart .......................................... 130
        3.4.1. Blood Circulation in the Heart ................. 130
        3.4.2. A Model of the Left-Ventricular Ejection
               Dynamics ....................................... 130
        3.4.3. An Optimal Control Problem ..................... 132
        3.4.4. Another Model of the Left-Ventricular
               Ejection Dynamics .............................. 137
References .................................................... 139

4. A Mathematical Model of Hemodialysis ....................... 141
   4.1. A One-Compartment Model ............................... 141
        4.1.1. The Mass Transport in the Dialyzer ............. 141
        4.1.2. The Temporal Development of the Toxin
               Concentration in the Blood without
               Ultrafiltration ................................ 143
        4.1.3. The Temporal Development of the Toxin
               Concentration in the Blood with
               Ultrafiltration ................................ 148
   4.2. A Two-Compartment Model ............................... 152
        4.2.1. Derivation of the Model Equations .............. 152
        4.2.2. Determination of the Clearance of the Cell
               Membranes for Urea ............................. 154
   4.3. Computation of Periodic Toxin Concentrations .......... 158
        4.3.1. The General Method ............................. 158
        4.3.2. The Case of Constant Clearance of the
               Dialyzer ....................................... 162
        4.3.3. Discretization of the Model Equations .......... 163
        4.3.4. Numerical Results for Urea ..................... 167
        4.3.5. The Influence of the Urea Generation Rate ...... 170
        4.3.6. Determination of the Urea Generation Rate and
               the Rest Clearance of the Kidneys .............. 171
   4.4. A Three-Compartment Model ............................. 173
        4.4.1. Motivation and Derivation of the
               Model Equations ................................ 173
        4.4.2. Determination of the Clearance of the Cell
               Membranes of the Brain ......................... 175
        4.4.3. Computation of Periodic Urea Concentration
               Curves ......................................... 176
        4.4.4. Numerical Results .............................. 182
References .................................................... 183

A. Appendix ................................................... 185
   A.1. A Problem of Optimal Control .......................... 185
        A.l.l. The Problem .................................... 185
        A.1.2. Multiplier Rule ................................ 186
   A.2. Existence of Positive Periodic Solutions in
        a General Diffusion Model ............................. 189
        A.2.1. The Model ...................................... 189
        A.2.2. An Existence and Unicity Theorem ............... 190
   A.3. Asymptotic Stability of Fixed Points .................. 195

Index ......................................................... 201


 
Выставка новых поступлений  |  Поступления иностранных книг в библиотеки СО РАН : 2003 | 2006 |2008
 

[О библиотеке | Академгородок | Новости | Выставки | Ресурсы | Библиография | Партнеры | ИнфоЛоция | Поиск]
  © 1997–2024 Отделение ГПНТБ СО РАН  

Документ изменен: Wed Feb 27 14:52:18 2019. Размер: 9,687 bytes.
Посещение N 1086 c 26.04.2010