Kichenassamy S. Fuchsian reduction (Boston, 2007). - ОГЛАВЛЕНИЕ / CONTENTS
Навигация

 
Выставка новых поступлений  |  Поступления иностранных книг в библиотеки СО РАН : 2003 | 2006 |2008
ОбложкаKichenassamy S. Fuchsian reduction: applications to geometry, cosmology and mathematical physics. - Boston: Birkhauser, 2007. - 289 p. - (Progress in Nonlinear Differential Equations and Their Applications ; N 71). - ISBN 9780817643522
 

Место хранения: 013 | Институт математики СО РАН | Новосибирск | Библиотека

Оглавление / Contents
 
Preface ....................................................... vii

1.  Introduction ................................................ 1
    1.1.  Singularity locus as parameter ........................ 1
    1.2.  The main steps of reduction ........................... 2
    1.3.  A few definitions ..................................... 4
    1.4.  An algorithm in eight steps ........................... 4
    1.5.  Simple examples of reduced Fuchsian equations ......... 5
    1.6.  Reduction and applications ........................... 13

PART I. FUCHSIAN REDUCTION

2.  Formal Series .............................................. 23
    2.1.  The Operator D and its first properties .............. 24
    2.2.  The space Al and its variants ........................ 27
    2.3.  Formal series with variable exponents ................ 35
    2.4.  Relation of Ag to the invariant theory of
          binary forms ......................................... 39
    Problems ................................................... 42

3.  General Reduction Methods .................................. 45
    3.1.  Reduction of a single equation ....................... 45
    3.2.  Introduction of several time variables and second
          reduction ............................................ 51
    3.3.  Semilinear systems ................................... 52
    3.4.  Structure of the formal series with several
          time variables ....................................... 54
    3.5.  Resonances, instability, and group invariance ........ 58
    3.6.  Stability and parameter dependence ................... 64
    Problems ................................................... 65

PART II. THEORY OF FUCHSIAN PARTIAL DIFFERENTIAL EQUATIONS

4.  Convergent Series Solutions of Fuchsian Initial-Value
    Problems ................................................... 69
    4.1.  Theory of linear Fuchsian ODEs ....................... 69
    4.2.  Initial-value problem for Fuchsian PDEs with
          analytic data ........................................ 71
    4.3.  Generalized Fuchsian systems ......................... 75
    4.4.  Notes ................................................ 82
    Problems ................................................... 83

5.  Fuchsian Initial-Value Problems in Sobolev Spaces .......... 85
    5.1.  Singular systems of ODEs in weighted spaces .......... 86
    5.2.  A generalized Fuchsian ODE ........................... 89
    5.3.  Fuchsian PDEs: abstract results ...................... 90
    5.4.  Optimal regularity for Fuchsian PDEs ................. 97
    5.5.  Reduction to a symmetric system ..................... 101
    Problems .................................................. 104

6.  Solution of Fuchsian Elliptic Boundary-Value Problems ..... 105
    6.1.  Basic LP results for equations with degenerate
          characteristic form ................................. 106
    6.2.  Schauder regularity for Fuchsian problems ........... 109
    6.3.  Solution of a model Fuchsian operator ............... 113
    Problems .................................................. 118

PART III. APPLICATIONS

7.  Applications in Astronomy ................................. 121
    7.1.  Notions on stellar modeling ......................... 121
    7.2.  Polytropic model .................................... 123
    7.3.  Point-source model .................................. 124
    Problems .................................................. 126

8.  Applications in General Relativity ........................ 129
    8.1.  The big-bang singularity and AVD behavior ........... 129
    8.2.  Gowdy space-times ................................... 131
    8.3.  Space-times with twist .............................. 137
    Problems .................................................. 142

9.  Applications in Differential Geometry ..................... 143
    9.1.  Fefferman-Graham metrics ............................ 143
    9.2.  First Fuchsian reduction and construction
          of formal solutions ................................. 147
    9.3.  Second Fuchsian reduction and convergence
          of formal solutions ................................. 149
    9.4.  Propagation of constraint equations ................. 151
    9.5.  Special cases ....................................... 153
    9.6.  Conformal changes of metric ......................... 154
    9.7.  Loewner-Nirenberg metrics ........................... 156
    Problems .................................................. 161

10. Applications to Nonlinear Waves ........................... 163
    10.1. From blowup time to blowup pattern .................. 163
    10.2. Semilinear wave equations ........................... 167
    10.3. Nonlinear optics and lasers ......................... 181
    10.4. Weak detonations .................................... 198
    10.5. Soliton theory ...................................... 202
    10.6. The Liouville equation .............................. 209
    10.7. Nirenberg's example ................................. 213
    Problems .................................................. 214

11. Boundary Blowup for Nonlinear Elliptic Equations .......... 217
    11.1. A renormalized energy for boundary blowup ........... 218
    11.2. Hardy-Trudinger inequalities ........................ 219
    11.3. Variational characterization of solutions
          with boundary blowup ................................ 223
    11.4. Construction of the partition of unity .............. 225
    Problems .................................................. 227

PART IV. BACKGROUND RESULTS

12. Distance Function and Holder Spaces ....................... 231
    12.1. The distance function ............................... 231
    12.2. Holder spaces on C2+a domains ....................... 233
    12.3. Interior estimates for the Laplacian ................ 239
    12.4. Perturbation of coefficients ........................ 243

13. Nash—Moser Inverse Function Theorem ....................... 247
    13.1. Nash-Moser theorem without smoothing ................ 247
    13.2. Nash-Moser theorem with smoothing ................... 249

Solutions ..................................................... 253

References .................................................... 277

Index ......................................................... 287


 
Выставка новых поступлений  |  Поступления иностранных книг в библиотеки СО РАН : 2003 | 2006 |2008
 

[О библиотеке | Академгородок | Новости | Выставки | Ресурсы | Библиография | Партнеры | ИнфоЛоция | Поиск]
  © 1997–2024 Отделение ГПНТБ СО РАН  

Документ изменен: Wed Feb 27 14:52:18 2019. Размер: 10,279 bytes.
Посещение N 1089 c 26.04.2010