Karczewska A. Convolution type stochastic Volterra equations (Torun, 2007). - ОГЛАВЛЕНИЕ / CONTENTS
Навигация

 
Выставка новых поступлений  |  Поступления иностранных книг в библиотеки СО РАН : 2003 | 2006 |2008
ОбложкаKarczewska A. Convolution type stochastic Volterra equations. - Toruń: Juliusz Schauder Center for nonlinear studies; Nicolaus Copernicus University, 2007. - 101 p. - (Lecture notes in nonlinear analysis; Vol. 10). - ISBN 978-83-2126-9
 

Место хранения: 013 | Институт математики СО РАН | Новосибирск | Библиотека

Оглавление / Contents
 
Introduction .................................................... 7

Chapter 1. Deterministic Volterra equations .................... 13
      1.1. Notations and preliminaries ......................... 13
      1.2. Resolvents and well-posedness ....................... 14
      1.3. Kernel functions .................................... 16
      1.4. Parabolic equations and regular kernels ............. 17
      1.5. Approximation theorems .............................. 20

Chapter 2. Probabilistic background ............................ 25
      2.1. Notations and conventions ........................... 25
      2.2. Classical infinite dimensional Wiener process ....... 26
      2.3. Stochastic integral with respect to cylindrical
           Wiener process ...................................... 29
           2.3.1. Properties of the stochastic integral ........ 35
      2.4. The stochastic Fubini theorem and the Itô formula ... 35

Chapter 3. Stochastic Volterra equations in Hilbert space ...... 37
      3.1. Notions of solutions to stochastic Volterra
           equations ........................................... 38
           3.1.1. Introductory results ......................... 39
           3.1.2. Results in general case ...................... 42
      3.2. Existence of strong solution ........................ 47
      3.3. Fractional Volterra equations ....................... 52
           3.3.1. Convergence of α-times resolvent families .... 53
           3.3.2. Strong solution .............................. 57
      3.4. Examples ............................................ 62

Chapter 4. Stochastic Volterra equations in spaces of
           distributions ....................................... 65
      4.1. Generalized and classical homogeneous Gaussian
           random fields ....................................... 65
      4.2. Regularity of solutions to stochastic Volterra
           equations ........................................... 69
           4.2.1. Stochastic integration ....................... 69
           4.2.2. Stochastic Volterra equation ................. 73
           4.2.3. Continuity in terms of Γ ..................... 74
           4.2.4. Some special cases ........................... 76
      4.3. Limit measure to stochastic Volterra equations ...... 78
           4.3.1. The main results ............................. 79
           4.3.2. Proofs of theorems ........................... 82
           4.3.3. Some special case ............................ 84
      4.4. Regularity of solutions to equations with infinite
           delay ............................................... 85
           4.4.1. Introduction and setting the problem ......... 85
           4.4.2. Main results ................................. 88

References ..................................................... 95

Index .......................................................... 99


 
Выставка новых поступлений  |  Поступления иностранных книг в библиотеки СО РАН : 2003 | 2006 |2008
 

[О библиотеке | Академгородок | Новости | Выставки | Ресурсы | Библиография | Партнеры | ИнфоЛоция | Поиск]
  © 1997–2024 Отделение ГПНТБ СО РАН  

Документ изменен: Wed Feb 27 14:52:18 2019. Размер: 6,612 bytes.
Посещение N 1025 c 26.04.2010