Iwaniec T. The Beltrami equation (Providence, 2008). - ОГЛАВЛЕНИЕ / CONTENTS
Навигация

 
Выставка новых поступлений  |  Поступления иностранных книг в библиотеки СО РАН : 2003 | 2006 |2008
ОбложкаIwaniec T. The Beltrami equation / Iwaniec T., Martin G. - Providence: AMS, 2008. - 92 p. - (Memoirs of the American mathematical society; N 893). - ISSN 0065-9266; ISBN 0821840452
 

Место хранения: 013 | Институт математики СО РАН | Новосибирск | Библиотека

Оглавление / Contents
 
Chapter 1. Introduction ......................................... 1

Chapter 2. Quasiconformal Mappings .............................. 5
  2.1. Analytic Definition of Quasiconformality ................. 5
  2.2. The Beltrami Equation .................................... 6
  2.3. Radial Stretchings ....................................... 7
  2.4. Classical Regularity Theory .............................. 8

Chapter 3. Partial Differential Equations ...................... 11
  3.1. The Transformation Formula .............................. 11
  3.2. A Fundamental Example ................................... 12
  3.3. The Construction ........................................ 13
  3.4. Cavitation and Riemann Surfaces ......................... 15

Chapter 4. Mappings of Finite Distortion ....................... 17
  4.1. Orlicz-Sobolev Spaces ................................... 18
  4.2. Monotonicity ............................................ 21
  4.3. A Class of Orlicz Functions ............................. 22
  4.4. The Monotonicity Theorem ................................ 23
  4.5. Modulus of Continuity ................................... 24

Chapter 5. Hardy Spaces and BMO ................................ 27
  5.1. Moilifiers .............................................. 27
  5.2. Hardy-Orlicz Spaces ..................................... 28
  5.3. BMO ..................................................... 29
  5.4. L log L-Integrability ................................... 30
  5.5. Liouville Type Theorems ................................. 30

Chapter 6. The Principal Solution .............................. 33
  6.1. Solutions ............................................... 33
  6.2. Uniqueness of Principal Solutions ....................... 34
  6.3. Stoilow Factorization ................................... 35

Chapter 7. Solutions for Integrable Distortion ................. 39
  7.1. Distortion in the Exponential Class ..................... 41
  7.2. An Example .............................................. 42
  7.3. Results ................................................. 43
  7.4. Distortion in the Subexponential Class .................. 45
  7.5. An Example .............................................. 45
  7.6. Further Generalities .................................... 47
  7.7. Existence Theory ........................................ 48
  7.8. Global Solutions ........................................ 60
  7.9. Holomorphic Dependence .................................. 64
 7.10. Examples and Non-Uniqueness ............................. 67
 7.11. Equations in the Plane .................................. 73
 7.12. Compactness ............................................. 77
 7.13. Removable Singularities ................................. 79
 7.14. Final Comments .......................................... 80

Chapter 8. Some Technical Results .............................. 81
  8.1. The Divergence Condition ................................ 81
  8.2. Integration by Parts .................................... 84
  8.3. Higher Integrability .................................... 86
Bibliography ................................................... 89


 
Выставка новых поступлений  |  Поступления иностранных книг в библиотеки СО РАН : 2003 | 2006 |2008
 

[О библиотеке | Академгородок | Новости | Выставки | Ресурсы | Библиография | Партнеры | ИнфоЛоция | Поиск]
  © 1997–2024 Отделение ГПНТБ СО РАН  

Документ изменен: Wed Feb 27 14:52:18 2019. Размер: 6,798 bytes.
Посещение N 1153 c 26.04.2010