Hajlasz P. Weakly differentiable mappings between manifolds (Providence, 2008). - ОГЛАВЛЕНИЕ / CONTENTS
Навигация

 
Выставка новых поступлений  |  Поступления иностранных книг в библиотеки СО РАН : 2003 | 2006 |2008
ОбложкаHajłasz P. Weakly differentiable mappings between manifolds / Hajł asz P., Iwaniec T., Malý J., Onninen J. - Providence: AMS, 2008. - 72 p. - (Memoirs of the American mathematical society; N 899). - ISSN 0065-9266; ISBN 0821840797
 

Место хранения: 013 | Институт математики СО РАН | Новосибирск | Библиотека

Оглавление / Contents
 
Chapter 1. Introduction ......................................... 1

Chapter 2. Preliminaries Concerning Manifolds ................... 7
  2.1. Manifolds ................................................ 7
  2.2. The Sobolev space W1,p(X,Y) ............................... 8
  2.3. Differential forms ....................................... 9
  2.4. Mollifiers and smoothing operator ....................... 15
  2.5. Maximal operators ....................................... 16

Chapter 3. Examples ............................................ 21
  3.1. The longitude projection ................................ 21
  3.2. Spherical coordinates ................................... 22
  3.3. Winding around the longitude circles .................... 22
  3.4. A mapping of infinite degree ............................ 23

Chapter 4. Some Classes of Functions ........................... 25
  4.1. Marcinkiewicz space Lpweak(X) ............................ 25
  4.2. The space Lαp(X) ........................................ 26
  4.3. The Orlicz space Lp ..................................... 28
  4.4. Grand GLp-space ......................................... 31
  4.5. Relations between spaces ................................ 32
  4.6. Sobolev classes ......................................... 35

Chapter 5. Smooth Approximation ................................ 37
  5.1. Web like structures ..................................... 37
  5.2. Vanishing web oscillations .............................. 37
  5.3. Statements of the results ............................... 38
  5.4. Proof of Theorem 5.1 .................................... 39
  5.5. Spinning a web on X ..................................... 42
  5.6. Proof of Theorems 1.1 and 1.2 ........................... 44
  5.7. Proof of Theorem 5.2 .................................... 45
  5.8. Proof of Theorem 1.3 .................................... 45

Chapter 6. L1-Estimates of the Jacobian ........................ 47
  6.1. Weak wedge products ..................................... 48
  6.2. Distributional Jacobian ................................. 49
  6.3. Proof of Theorem 6.5 .................................... 51

Chapter 7. H1-Estimates ........................................ 55
  7.1. The Hausdorff content ................................... 55
  7.2. The H1-Theorem .......................................... 56

Chapter 8. Degree Theory ....................................... 63
  8.1. Definition of the degree via weak integrals ............. 63
  8.2. Weak integrals .......................................... 64
  8.3. Stability of the degree ................................. 66
  8.4. The degree in Orlicz and grand Sobolev spaces ........... 67

Chapter 9. Mappings of Finite Distortion ....................... 69
  Acknowledgements ............................................. 70

Bibliography ................................................... 71


 
Выставка новых поступлений  |  Поступления иностранных книг в библиотеки СО РАН : 2003 | 2006 |2008
 

[О библиотеке | Академгородок | Новости | Выставки | Ресурсы | Библиография | Партнеры | ИнфоЛоция | Поиск]
  © 1997–2024 Отделение ГПНТБ СО РАН  

Документ изменен: Wed Feb 27 14:52:18 2019. Размер: 6,809 bytes.
Посещение N 1292 c 26.04.2010