Gordon C.McA. Toroidal Dehn fillings on hyperbolic 3-manifolds (Providence, 2008). - ОГЛАВЛЕНИЕ / CONTENTS
Навигация

 
Выставка новых поступлений  |  Поступления иностранных книг в библиотеки СО РАН : 2003 | 2006 |2008
ОбложкаGordon C.McA. Toroidal Dehn fillings on hyperbolic 3-manifolds / Gordon C.McA., Wu Y.-Q. - Providence: American Mathematical Society, 2008. - 140 p. - (Memoirs of the American Mathematical Society; N 909). - ISSN 0065-9266; - ISBN 9780821841679
 

Место хранения: 013 | Институт математики СО РАН | Новосибирск | Библиотека

Оглавление / Contents
 
1.  Introduction ................................................ 1
2.  Preliminary lemmas .......................................... 5
3.  Γa+ has no interior vertex ................................. 18
4.  Possible components of Γa+ ................................. 20
5.  The case n1, n2 ≤ 4 ........................................ 26
6.  Kleinian graphs ............................................ 34
7.  If na = 4, nb ≥ 4 and Γa+ has a small component then Γa is
    kleinian ................................................... 37
8.  If na = 4, nb ≥ 4 and Γb is non-positive then Γa+ has no
    small component ............................................ 41
9.  If Γb is non-positive and na = 4 then nb ≤ 4 ............... 46
10. The case n1 = n2 = 4 and Γ1, Γ2 non-positive ................ 51
11. The case na = 4, and Γb positive ........................... 54
12. The case na = 2, nb ≥ 3, and Γb positive ................... 64
13. The case na = 2, nb > 4, Γ1, Γ2, and max(ω1 + ω2, ω3 + ω4)
    = 2nb - 2 .................................................. 74
14. The case na = 2, nb > 4, Γ1, Γ2 non-positive, and
    ω1 = ω2 = nb ............................................... 78
15. Γa with na ≤ 2 ............................................. 85
16. The case na = 2, nb = 3 or 4, and Γ1, Γ2 non-positive ....... 86
17. Equidistance classes ....................................... 94
18. The case nb = 1 and na = 2 ................................. 96
19. The case n1 = n2 = 2 and Γb positive ....................... 97
20. The case n1 = n2 = 2 and both Γ1, Γ2 non-positive .......... 103
21. The main theorems ......................................... 108
22. The construction of Mi as a double branched cover ......... 111
23. The manifolds Mi are hyperbolic ........................... 122
24. Toroidal surgery on knots in S3 ........................... 131

Bibliography .................................................. 139


 
Выставка новых поступлений  |  Поступления иностранных книг в библиотеки СО РАН : 2003 | 2006 |2008
 

[О библиотеке | Академгородок | Новости | Выставки | Ресурсы | Библиография | Партнеры | ИнфоЛоция | Поиск]
  © 1997–2024 Отделение ГПНТБ СО РАН  

Документ изменен: Wed Feb 27 14:52:18 2019. Размер: 6,948 bytes.
Посещение N 1082 c 26.04.2010