Goldman W.M. Rank one Higgs bundles and representations of fundamental groups of Riemann surfaces (Providence, 2008). - ОГЛАВЛЕНИЕ / CONTENTS
Навигация

 
Выставка новых поступлений  |  Поступления иностранных книг в библиотеки СО РАН : 2003 | 2006 |2008
ОбложкаGoldman W.M. Rank one Higgs bundles and representations of fundamental groups of Riemann surfaces / Goldman W.M., Xia E.Z. - Providence, R.I.: American Mathematical Society, 2008. - 69 p. - (Memoirs of the American Mathematical Society; Vol. 193, N 904). - ISBN 082184136X
 

Место хранения: 013 | Институт математики СО РАН | Новосибирск | Библиотека

Оглавление / Contents
 
Introduction .................................................... 1

1. Equivalences of deformation theories ......................... 4

2. The Betti and de Rham deformation theories and their moduli
   spaces ....................................................... 5
   2.1. The Betti groupoid ...................................... 6
   2.2. The de Rham groupoid .................................... 8
   2.3. Equivalence of de Rham and Betti groupoids ............. 14

3. The Dolbeault groupoid ...................................... 17
   3.1. Holomorphic line bundles ............................... 17
   3.2. The moduli spaces ...................................... 21
   3.3. Geometric structure of the Dolbeault moduli space ...... 23

4. Equivalence of de Rham and Dolbeault groupoids .............. 25
   4.1. Construction of the equivalence ........................ 25
   4.2. Higgs coordinates ...................................... 33
   4.3. Involutions ............................................ 36

5. Hyperkahler geometry on the moduli space .................... 37
   5.1. The quaternionic structure ............................. 37
   5.2. The Riemannian metric .................................. 39
   5.3. Complex-symplectic structure ........................... 40
   5.4. Quaternionization ...................................... 42

6. The twistor space ........................................... 43
   6.1. The complex projective line ............................ 43
   6.2. The twistor space as a smooth vector bundle ............ 48
   6.3. A holomorphic atlas for the twistor space .............. 49
   6.4. The twistor lines ...................................... 51
   6.5. The real structure on the twistor space ................ 52
   6.6. Symplectic geometry of the twistor space ............... 53
   6.7. The lattice quotient ................................... 55
   6.8. Functions and flows .................................... 56

7. The moduli space and the Riemann period matrix .............. 59
   7.1. Coordinates for the Betti moduli space ................. 59
   7.2. Abelian differentials and their periods ................ 60
   7.3. Flat connections ....................................... 62
   7.4. Higgs fields ........................................... 64
   7.5. The fig.1*-action in terms of the period matrix ............ 65
   7.6. The fig.1*-action and the real points ...................... 65
 
Bibliography ................................................... 67


 
Выставка новых поступлений  |  Поступления иностранных книг в библиотеки СО РАН : 2003 | 2006 |2008
 

[О библиотеке | Академгородок | Новости | Выставки | Ресурсы | Библиография | Партнеры | ИнфоЛоция | Поиск]
  © 1997–2024 Отделение ГПНТБ СО РАН  

Документ изменен: Wed Feb 27 14:52:18 2019. Размер: 6,369 bytes.
Посещение N 1123 c 26.04.2010