Gansiburg M.I. Limit theorems of polynomial approximation with exponential weights (Providence, 2008). - ОГЛАВЛЕНИЕ / CONTENTS
Навигация

 
Выставка новых поступлений  |  Поступления иностранных книг в библиотеки СО РАН : 2003 | 2006 |2008
ОбложкаGansiburg M.I. Limit theorems of polynomial approximation with exponential weights. - Providence: AMS, 2008. - 159 p. - (Memoirs of the American mathematical society; N 897). - ISSN 0065-9266; ISBN 9780821840634
 

Место хранения: 013 | Институт математики СО РАН | Новосибирск | Библиотека

Оглавление / Contents
 
Chapter 1. Introduction ......................................... 1
   1.1. A Brief Review .......................................... 1
   1.2. Results and Organization of the Monograph ............... 5
   1.3. Basic Notation and Some Preliminaries ................... 7
   1.4. Classes of Weights and Basic Estimates .................. 8
   1.5. Acknowledgements ....................................... 13

Chapter 2. Statement of Main Results ........................... 15
   2.1. Limit Theorems of Polynomial Approximation with
        Exponential Weights .................................... 15
   2.2. Approximation of Entire Functions of Exponential
        Type ................................................... 16
   2.3. Polynomial Inequalities in the Complex Plane ........... 17

Chapter 3. Properties of Harmonic Functions .................... 19
   3.1. The Poisson Integral Re H(ω) ........................... 19
   3.2. The Function h(r) and the Constant bn .................. 24
   3.3. The Functions ф(r) and ф1(r) ........................... 29
   3.4. The Main Estimate for Re H(ω) .......................... 35

Chapter 4. Polynomial Inequalities with Exponential Weights .... 43
   4.1. Nikolskii-type Inequalities ............................ 43
   4.2. Extremal Polynomials ................................... 45
   4.3. Polynomial Inequalities in the Complex Plane ........... 55
   4.4. Proofs of Theorems 2.3.1 and 2.3.2 ..................... 57

Chapter 5. Entire Functions of Exponential Type and their
        Approximation Properties ............................... 59
   5.1. Entire Functions of Exponential Type ................... 59
   5.2. Approximation Properties of Entire Functions of
        Exponential Type ....................................... 62

Chapter 6. Polynomial Interpolation and Approximation of
        Entire Functions of Exponential Type ................... 67
   6.1. Interpolation on the Interval In ....................... 67
   6.2. Interpolation on I\In .................................. 71
   6.3. Proof of Theorem 2.2.1 ................................. 72
   6.4. Proof of Theorem 2.2.2 ................................. 74

Chapter 7. Proofs of the Limit Theorems ........................ 77
   7.1. Proof of Theorem 2.1.1 ................................. 77
   7.2. Proof of Theorem 2.1.2 ................................. 80
   7.3. Proofs of Theorems 2.1.3 and 2.1.4 ..................... 82

Chapter 8. Applications ........................................ 85
   8.1. Approximation of Individual Functions and Proof of
        Theorem 2.3.3 .......................................... 85
   8.2. An Asymptotically Sharp Constant of Weighted
        Approximation on the Class WrHλ[I] ..................... 96
   8.3. Convergence of Polynomials and a Mehler-Heine
        Formula for Orthonormal Polynomials ................... 100

Chapter 9. Multidimensional Limit Theorems of Polynomial
        Approximation with Exponential Weights ................ 105
   9.1. Multidimensional Limit Theorems with Exponential
        Weights ............................................... 105
   9.2. Proof of Theorem 9.1.3 ................................ 108
   9.3. Proofs of Theorems 9.1.1 and 9.1.4 .................... 111
   9.4. Approximation of A-Homogeneous Functions .............. 113

Chapter 10. Examples .......................................... 117
  10.1. W(x) = exp(-|x|α), α > 1 .............................. 117
  10.2. W(x) = exp(-|x|) ...................................... 121
  10.3. W(x) = ехр(-|x|α), 0 < α <1 ........................... 127
  10.4. W(x) = ехр(-|x|α), α → ∞ .............................. 132
  10.5. Examples of Erdös Weights ............................. 134

Appendix A. Appendix. Negativity of a Kernel .................. 137
   A.1. Statement of the Main Result .......................... 137
   A.2. Some Technical Results ................................ 138
   A.3. Proof of Proposition A. 1.1 ........................... 144

Bibliography .................................................. 155

Index ......................................................... 161


 
Выставка новых поступлений  |  Поступления иностранных книг в библиотеки СО РАН : 2003 | 2006 |2008
 

[О библиотеке | Академгородок | Новости | Выставки | Ресурсы | Библиография | Партнеры | ИнфоЛоция | Поиск]
  © 1997–2024 Отделение ГПНТБ СО РАН  

Документ изменен: Wed Feb 27 14:52:18 2019. Размер: 8,252 bytes.
Посещение N 1243 c 26.04.2010