Factorization of matrix and operator functions: the state space method (Basel, 2008). - ОГЛАВЛЕНИЕ / CONTENTS
Навигация

 
Выставка новых поступлений  |  Поступления иностранных книг в библиотеки СО РАН : 2003 | 2006 |2008
ОбложкаFactorization of matrix and operator functions: the state space method / Bart H., Gohberg I., Kaashoek M.A., Ran A.C.M. - Basel; Boston: Birkhäuser, 2008. - 409 p. - (Operator theory, advances and applications; Vol. 178). - ISBN 9783764382674
 

Место хранения: 013 | Институт математики СО РАН | Новосибирск | Библиотека

Оглавление / Contents
 
Preface ........................................................ xi

Introduction..................................................... 1

Part I. Motivating Problems, Systems and Realizations

1. Motivating Problems
   1.1 Linear time invariant systems and cascade connection ..... 7
   1.2 Characteristic operator functions and invariant
       subspaces (1) ........................................... 11
   1.3. Characteristic operator functions and invariant
       subspaces (2) ........................................... 14
   1.4. Factorization of monic matrix polynomials .............. 17
   1.5. Wiener-Hopf integral operators and factorization ....... 18
   1.6. Block Toeplitz equations and factorization ............. 21
       Notes ................................................... 23
2. Operator Nodes, Systems, and Operations on Systems
   2.1. Operator nodes, systems and transfer functions ......... 25
   2.2. Inversion .............................................. 27
   2.3. Products ............................................... 30
   2.4. Factorization and matching of invariant subspaces ...... 32
   2.5. Factorization and inversion revisited .................. 37
        Notes .................................................. 48
3. Various Classes of Systems
   3.1. Brodskii systems ....................................... 49
   3.2. Krein systems .......................................... 50
   3.3. Unitary systems ........................................ 51
   3.4. Monic systems .......................................... 53
   3.5. Polynomial systems ..................................... 57
   3.6. Mobius transformation of systems ....................... 58
        Notes .................................................. 64
4. Realization and Linearization of Operator Functions
   4.1. Realization of rational operator functions ............. 65
   4.2. Realization of analytic operator functions ............. 67
   4.3. Linearization .......................................... 69
   4.4. Linearization and Schur complements .................... 73
        Notes .................................................. 76
5. Factorization and Riccati Equations
   5.1. Angular subspaces and angular operators ................ 77
   5.2. Angular subspaces and the algebraic Riccati equation ... 79
   5.3. Angular operators and factorization .................... 80
   5.4. Angular spectral subspaces and the algebraic Riccati
        equation ............................................... 86
        Notes .................................................. 88
6. Canonical Factorization and Applications
   6.1. Canonical factorization of rational matrix
        functions .............................................. 89
   6.2. Application to Wiener-Hopf integral equations .......... 92
   6.3. Application to block Toeplitz operators ................ 97
        Notes ................................................. 100

Part II. Minimal Realization and Minimal Factorization

7. Minimal Systems
   7.1. Minimality of systems ................................. 105
   7.2. Controllability and observability for finite-dimensional
        systemsm .............................................. 109
   7.3. Minimality for finite-dimensional systems ............. 112
   7.4. Minimality for Hilbert space systems .................. 116
   7.5. Minimality in special cases ........................... 125
        7.5.1. Brodskii systems ............................... 125
        7.5.2. Krein systems .................................. 125
        7.5.3. Unitary systems ................................ 126
        7.5.4. Monic systems .................................. 127
        7.5.5. Polynomial systems ............................. 128
        Notes ................................................. 128
8. Minimal Realizations and Pole-Zero Structure
   8.1. Zero data and Jordan chains ........................... 129
   8.2. Pole data ............................................. 142
   8.3. Minimal realizations in terms of zero or pole data .... 145
   8.4. Local degree and local minimality ..................... 147
   8.5. McMillan degree and minimality of systems ............. 160
        Notes ................................................. 161
9. Minimal Factorization of Rational Matrix Functions
   9.1. Minimal factorization ................................. 163
   9.2. Pseudo-canonical factorization ........................ 169
   9.3. Minimal factorization in a singular case .............. 172
        Notes ................................................. 179

Part III. Degree One Factors, Companion Based Rational Matrix
          Functions, and Job Scheduling

10. Factorization into Degree One Factors
    10.1. Simultaneous reduction to complementary triangular
          forms ............................................... 184
    10.2. Factorization into elementary factors and
          realization ......................................... 188
    10.3. Complete factorization (general) .................... 195
    10.4. Quasicomplete factorization (general) ............... 199
          Notes ............................................... 209
11. Complete Factorization of Companion Based Matrix Functions
    11.1. Companion matrices: preliminaries ................... 212
    11.2. Simultaneous reduction to complementary triangular
          forms ............................................... 216
    11.3. Preliminaries about companion based matrix
          functions ........................................... 231
    11.4. Companion based matrix functions: poles and zeros ... 234
    11.5. Complete factorization (companion based) ............ 244
    11.6. Maple procedures for calculating complete
          factorizations ...................................... 246
          11.6.1. Maple environment and procedures ............ 247
          11.6.2. Poles, zeros and orderings .................. 247
          11.6.3. Triangularization routines (complete) ....... 251
          11.6.4. Factorization procedures .................... 252
          11.6.5. Example ..................................... 254
     11.7 Appendix: invariant subspaces of companion
          matrices ............................................ 260
          Notes ............................................... 266
12. Quasicomplete Factorization and Job Scheduling
    12.1. A combinatorial lemma ............................... 268
    12.2. Quasicomplete factorization (companion based) ....... 272
    12.3. A review of the two machine flow shop problem ....... 288
    12.4. Quasicomplete factorization and the 2MSFP ........... 293
    12.5. Maple procedures for quasicomplete factorizations ... 301
          12.5.1. Maple environment ........................... 302
          12.5.2. Triangularization routines
                  (quasicomplete) ............................. 303
          12.5.3. Transformations into upper triangular
                  form ........................................ 307
          12.5.4. Transformation into complementary triangular
                  forms ....................................... 308
          12.5.5. An example: symbolic and quasicomplete ...... 309
          12.5.6. Concluding remarks .......................... 314
          Notes ............................................... 315

Part IV. Stability of Factorization and of Invariant Subspaces

13. Stability of Spectral Divisors
    13.1. Examples and first results for the finite-dimensional
          case ................................................ 319
    13.2. Opening between subspaces and angular operators ..... 322
    13.3. Stability of spectral divisors of systems ........... 327
    13.4. Applications to transfer functions .................. 332
    13.5. Applications to Riccati equations ................... 335
          Notes ............................................... 338
14. Stability of Divisors
    14.1. Stable invariant subspaces .......................... 339
    14.2. Lipschitz stable invariant subspaces ................ 345
    14.3. Stable minimal factorizations of rational matrix
          functions ........................................... 348
    14.4. Stable complete factorizations ...................... 352
    14.5. Stable factorizations of monic matrix polynomials ... 356
    14.6. Stable solutions of the operator Riccati equation ... 359
    14.7. Stability of stable factorizations .................. 360
    14.8. Isolated factorizations and related topics .......... 363
          14.8.1. Isolated invariant subspaces ................ 363
          14.8.2. Isolated chains of invariant subspaces ...... 366
          14.8.3. Isolated factorizations ..................... 369
          14.8.4. Isolated solutions of the Riccati
                  equation .................................... 372
          Notes ............................................... 372
15. Factorization of Real Matrix Functions
    15.1. Real matrix functions ............................... 375
    15.2. Real monic matrix polynomials ....................... 378
    15.3. Stable and isolated invariant subspaces ............. 379
    15.4. Stable and isolated real factorizations ............. 385
    15.5. Stability of stable real factorizations ............. 389
          Notes ............................................... 391

Bibliography .................................................. 393

List of Symbols ............................................... 401

Index ......................................................... 405


 
Выставка новых поступлений  |  Поступления иностранных книг в библиотеки СО РАН : 2003 | 2006 |2008
 

[О библиотеке | Академгородок | Новости | Выставки | Ресурсы | Библиография | Партнеры | ИнфоЛоция | Поиск]
  © 1997–2024 Отделение ГПНТБ СО РАН  

Документ изменен: Wed Feb 27 14:52:18 2019. Размер: 13,649 bytes.
Посещение N 1284 c 26.04.2010