Doney R.A. Fluctuation theory for Levy processes (Berlin, 2007). - ОГЛАВЛЕНИЕ / CONTENTS
Навигация

 
Выставка новых поступлений  |  Поступления иностранных книг в библиотеки СО РАН : 2003 | 2006 |2008
ОбложкаDoney R.A. Fluctuation theory for Lévy processes: Ecole d'Eté de Probabilités de Saint-Flour XXXV - 2005 / Doney R.A.; ed. by Picard J. - Berlin: Springer, 2007. - 147 p. - (Lecture notes in mathematics; 1897). - ISBN 978-3-540-48510-0
 

Место хранения: 013 | Институт математики СО РАН | Новосибирск | Библиотека

Оглавление / Contents
 
1.  Introduction to Levy Processes .............................. 1
    1.1. Notation ............................................... 1
    1.2. Poisson Point Processes ................................ 3
    1.3. The Levy-Tto Decomposition ............................. 5
    1.4. Levy Processes as Markov Processes ..................... 7

2.  Subordinators ............................................... 9
    2.1. Introduction ........................................... 9
    2.2. Basics ................................................. 9
    2.3. The Renewal Measure ................................... 10
    2.4. Passage Across a Level ................................ 13
    2.5. Arc-Sine Laws for Subordinators ....................... 15
    2.6. Rates of Growth ....................................... 16
    2.7. Killed Subordinators .................................. 17

3.  Local Times and Excursions ................................. 19
    3.1. Introduction .......................................... 19
    3.2. Local Time of a Markov Process ........................ 19
    3.3. The Regular, Instantaneous Case ....................... 20
    3.4. The Excursion Process ................................. 22
    3.5. The Case of Holding and Irregular Points .............. 23

4.  Ladder Processes and the Wiener—Hopf Factorisation ......... 25
    4.1. Introduction .......................................... 25
    4.2. The Random Walk Case .................................. 25
    4.3. The Reflected and Ladder Processes .................... 27
    4.4. Applications .......................................... 30
    4.5. A Stochastic Bound .................................... 35

5.  Further Wiener—Hopf Developments ........................... 41
    5.1. Introduction .......................................... 41
    5.2. Extensions of a Result due to Baxter .................. 41
    5.3. Les Equations Amicales of Vigon ....................... 43
    5.4. A First Passage Quintuple Identity .................... 49

6.  Creeping and Related Questions ............................. 51
    6.1. Introduction .......................................... 51
    6.2. Notation and Preliminary Results ...................... 52
    6.3. The Mean Ladder Height Problem ........................ 53
    6.4. Creeping .............................................. 56
    6.5. Limit Points of the Supremum Process .................. 59
    6.6. Regularity of the Half-Line ........................... 61
    6.7. Summary: Four Integral Tests .......................... 64

7.  Spitzer's Condition ........................................ 65
    7.1. Introduction .......................................... 65
    7.2. Proofs ................................................ 65
         7.2.1. The Case ρ = 0,1 ............................... 66
         7.2.2. A First Proof for the Case 0 < ρ < 1 ........... 66
         7.2.3. A Second Proof for the Case 0 < ρ < 1 .......... 68
    7.3. Further Results ....................................... 69
    7.4. Tailpiece ............................................. 80

8.  Levy Processes Conditioned to Stay Positive ................ 81
    8.1. Introduction .......................................... 81
    8.2. Notation and Preliminaries ............................ 81
    8.3. Definition and Path Decomposition ..................... 83
    8.4. The Convergence Result ................................ 86
    8.5. Pathwise Constructions of (X, fig.1) ..................... 89
         8.5.1. Tanaka's Construction .......................... 89
         8.5.2. Bertoin's Construction ......................... 91

9.  Spectrally Negative Levy Processes ......................... 95
    9.1. Introduction .......................................... 95
    9.2. Basics ................................................ 95
    9.3. The Random Walk Case .................................. 99
    9.4. The Scale Function ................................... 100
    9.5. Further Developments ................................. 104
    9.6. Exit Problems for the Reflected Process .............. 109
    9.7. Addendum ............................................. 112

10. Small-Time Behaviour ...................................... 115
    10.1. Introduction ........................................ 115
    10.2. Notation and Preliminary Results .................... 115
    10.3. Convergence in Probability .......................... 117
    10.4. Almost Sure Results ................................. 126
    10.5. Summary of Asymptotic Results ....................... 131
          10.5.1. Laws of Large Numbers ....................... 131
          10.5.2. Central Limit Theorems ...................... 131
          10.5.3. Exit from a Symmetric Interval .............. 132

References .................................................... 133

Index ......................................................... 139

List of Participants .......................................... 141

List of Short Lectures ........................................ 145


 
Выставка новых поступлений  |  Поступления иностранных книг в библиотеки СО РАН : 2003 | 2006 |2008
 

[О библиотеке | Академгородок | Новости | Выставки | Ресурсы | Библиография | Партнеры | ИнфоЛоция | Поиск]
  © 1997–2024 Отделение ГПНТБ СО РАН  

Документ изменен: Wed Feb 27 14:52:18 2019. Размер: 8,998 bytes.
Посещение N 1379 c 26.04.2010