Crespo T. Introduction to differential Galois theory (Cracow, 2007). - ОГЛАВЛЕНИЕ / CONTENTS
Навигация

 
Выставка новых поступлений  |  Поступления иностранных книг в библиотеки СО РАН : 2003 | 2006 |2008
ОбложкаCrespo T. Introduction to differential Galois theory / Crespo T., Hajto Z. - Cracow, 2007. - 94 s. - ISBN 978-83-7242-453-2
 

Место хранения: 013 | Институт математики СО РАН | Новосибирск | Библиотека

Оглавление / Contents
 
1. Introduction ................................................. 5

2. Differential rings ........................................... 7
   2.1. Derivations ............................................. 7
   2.2. Differential rings ...................................... 8
   2.3. Differential extensions ................................ 10
   2.4. The ring of differential operators ..................... 11

3. Picard-Vessiot extensions ................................... 13
   3.1. Homogeneous linear differential equations .............. 13
   3.2. Existence and uniqueness of the Picard-Vessiot
        extension .............................................. 14

4. Differential Galois group ................................... 21
   4.1. Examples ............................................... 21
   4.2. The differential Galois group as a linear algebraic
        group .................................................. 23

5. Fundamental theorem ......................................... 30

6. Liouville extensions ........................................ 39
   6.1. Liouville extensions ................................... 39
   6.2. Generalized Liouville extensions ....................... 40

7. Appendix on algebraic varieties ............................. 42
   7.1. Affine varieties ....................................... 42
   7.2. Abstract affine varieties .............................. 47
   7.3. Auxiliary results ...................................... 49

8. Appendix on algebraic groups ................................ 52
   8.1. The notion of algebraic group .......................... 52
   8.2. Connected algebraic groups ............................. 53
   8.3. Subgroups and morphisms ................................ 55
   8.4. Linearization of affine algebraic groups ............... 57
   8.5. Homogeneous spaces ..................................... 59
   8.6. Decomposition of algebraic groups ...................... 60
   8.7. Solvable algebraic groups .............................. 63
   8.8. Characters and semi-invariants ......................... 67
   8.9. Quotients .............................................. 68

9. Suggestions for further reading ............................. 72

10. Application to Integrability of Hamiltonian Systems Appendix
    by Juan J. Morales-Ruiz .................................... 74
    10.1. General non-intergrability theorems .................. 74
    10.2. Hypergeometric Equation .............................. 78
    10.3. Non-integability of Homogeneous Potentials ........... 79
    10.4. Suggestions for further reading ...................... 83

11. Bibliography ............................................... 87


 
Выставка новых поступлений  |  Поступления иностранных книг в библиотеки СО РАН : 2003 | 2006 |2008
 

[О библиотеке | Академгородок | Новости | Выставки | Ресурсы | Библиография | Партнеры | ИнфоЛоция | Поиск]
  © 1997–2024 Отделение ГПНТБ СО РАН  

Документ изменен: Wed Feb 27 14:52:16 2019. Размер: 6,318 bytes.
Посещение N 1424 c 26.04.2010