Bonfiglioli A. Stratified lie groups and potential theory for their sub-Laplacians (Berlin, 2007). - ОГЛАВЛЕНИЕ / CONTENTS
Навигация

 
Выставка новых поступлений  |  Поступления иностранных книг в библиотеки СО РАН : 2003 | 2006 |2008
ОбложкаBonfiglioli A. Stratified lie groups and potential theory for their sub-Laplacians / Bonfiglioli A., Lanconelli E., Uguzzoni F. - Berlin: Springer, 2007. - 800 p. - (Springer Monographs in Mathematics). - ISBN 9783540718963
 

Место хранения: 013 | Институт математики СО РАН | Новосибирск | Библиотека

Оглавление / Contents
 
Part I. Elements of Analysis of Stratified Groups

1.  Stratified Groups and Sub-Laplacians ........................ 3
    1.1. Vector Fields in fig.1N: Exponential Maps and Lie
         Algebras ............................................... 3
         1.1.1. Vector Fields in fig.1N ............................. 3
         1.1.2. Integral Curves ................................. 6
         1.1.3. Exponentials of Vector Fields ................... 8
         1.1.4. Lie Brackets of Vector Fields in fig.1N ............ 10
    1.2. Lie Groups on fig.1N ...................................... 13
         1.2.1. The Lie Algebra of a Lie Group on fig.1N ........... 13
         1.2.2. The Jacobian Basis ............................. 19
         1.2.3. The (Jacobian) Total Gradient .................. 22
         1.2.4. The Exponential Map of a Lie Group on fig.1N ....... 23
    1.3. Homogeneous Lie Groups on fig.1N .......................... 31
         1.3.1. δλ-homogeneous Functions and Differential
                Operators ...................................... 32
         1.3.2. The Composition Law of a Homogeneous Lie
                Group .......................................... 38
         1.3.3. The Lie Algebra of a Homogeneous Lie Group
                on fig.1N .......................................... 44
         1.3.4. The Exponential Map of a Homogeneous Lie
                Group .......................................... 48
    1.4. Homogeneous Carnot Groups ............................. 56
    1.5. The Sub-Laplacians on a Homogeneous Carnot Group ...... 62
         1.5.1. The Horizontal fig.2-gradient ...................... 68
    1.6. Exercises of Chapter 1 ................................ 73

2.  Abstract Lie Groups and Carnot Groups ...................... 87
    2.1. Abstract Lie Groups ................................... 87
         2.1.1. Differentiable Manifolds ....................... 87
         2.1.2. Tangent Vectors ................................ 91
         2.1.3. Differentials .................................. 95
         2.1.4. Vector Fields .................................. 97
         2.1.5. Commutators. φ-relatedness .................... 102
         2.1.6. Abstract Lie Groups ........................... 106
         2.1.7. Left Invariant Vector Fields and the Lie
                Algebra ....................................... 107
         2.1.8. Homomorphisms ................................. 112
         2.1.9. The Exponential Map ........................... 116
    2.2. Carnot Groups ........................................ 121
         2.2.1. Some Properties of the Stratification of a Carnot
                Group ......................................... 125
         2.2.2. Some General Results on Nilpotent Lie
                Groups ........................................ 128
         2.2.3. Abstract and Homogeneous Carnot Groups ........ 130
         2.2.4. More Properties of the Lie Algebra ............ 138
         2.2.5. Sub-Laplacians of a Stratified Group .......... 144
    2.3. Exercises of Chapter 2 ............................... 147

3.  Carnot Groups of Step Two ................................. 155
    3.1. The Heisenberg-Weyl Group ............................ 155
    3.2. Homogeneous Carnot Groups of Step Two ................ 158
    3.3. Free Step-two Homogeneous Groups ..................... 163
    3.4. Change of Basis ...................................... 165
    3.5. The Exponential Map of a Step-two Homogeneous
         Group ................................................ 166
    3.6. Prototype Groups of Heisenberg Type .................. 169
    3.7. H-groups (in the Sense of Metivier) .................. 173
    3.8. Exercises of Chapter 3 ............................... 177

4.  Examples of Carnot Groups ................................. 183
    4.1. A Primer of Examples of Carnot Groups ................ 183
         4.1.1. Euclidean Group ............................... 183
         4.1.2. Carnot Groups with Homogeneous
                Dimension Q ≤ 3 ............................... 184
         4.1.3. B-groups ...................................... 184
         4.1.4. K-type Groups ................................. 186
         4.1.5. Sum of Carnot Groups .......................... 190
    4.2. From a Set of Vector Fields to a Stratified Group .... 191
    4.3. Further Examples ..................................... 198
         4.3.1. The Vector Fields ∂1, ∂2 + х13 ................ 198
         4.3.2. Classical and Kohn Laplacians ................. 200
         4.3.3. Bony-type Sub-Laplacians ...................... 202
         4.3.4. Kolmogorov-type Sub-Laplacians ................ 204
         4.3.5. Sub-Laplacians Arising in Control Theory ...... 205
         4.3.6. Filiform Carnot Groups ........................ 207
    4.4. Fields not Satisfying One of the Hypotheses (H0), (H1),
         (H2) ................................................. 210
         4.4.1. Fields not Satisfying Hypothesis (H0) ......... 210
         4.4.2. Fields not Satisfying Hypothesis (H1) ......... 212
         4.4.3. Fields not Satisfying Hypothesis (H2) ......... 215
    4.5. Exercises of Chapter 4 ............................... 215

5.  The Fundamental Solution for a Sub-Laplacian and
    Applications .............................................. 227
    5.1. Homogeneous Norms .................................... 229
    5.2. Control Distances or Carnot-Caratheodory Distances ... 232
    5.3. The Fundamental Solution ............................. 236
         5.3.1. The Fundamental Solution in the Abstract
                Setting ....................................... 244
    5.4. fig.2-gauges and fig.2-radial Functions ...................... 246
    5.5. Gauge Functions and Surface Mean Value Theorem ....... 251
    5.6. Superposition of Average Operators ................... 257
    5.7. Harnack Inequalities ................................. 262
    5.8. Liouville-type Theorems .............................. 269
         5.8.1. Asymptotic Liouville-type Theorems ............ 274
    5.9. Sobolev-Stein Embedding Inequality ................... 276
    5.10. Analytic Hypoellipticity of Sub-Laplacians .......... 280
    5.11. Harmonic Approximation .............................. 287
    5.12. An Integral Representation Formula for Г ............ 291
    5.13. Appendix A. Maximum Principles ...................... 293
          5.13.1. A Decomposition Theorem for fig.2-harmonic
                  Functions ................................... 303
    5.14. Appendix B. The Improved Pseudo-triangle
          Inequality .......................................... 306
    5.15. Appendix C. Existence of Geodesies .................. 309
    5.16. Exercises of Chapter 5 .............................. 319

Part II Elements of Potential Theory for Sub-Laplacians

6.  Abstract Harmonic Spaces .................................. 337
    6.1. Preliminaries ........................................ 338
    6.2. Sheafs of Functions. Harmonic Sheafs ................. 340
         6.2.1. Harmonic Measures and Hyperharmonic
                Functions ..................................... 341
         6.2.2. Directed Families of Functions ................ 342
    6.3. Harmonic Spaces ...................................... 345
         6.3.1. Directed Families of Harmonic and Hyperharmonic
                Functions ..................................... 347
    6.4. fig.3-hyperharmonic Functions. Minimum Principle ......... 348
    6.5. Subharmonic and Superharmonic Functions. Perron
         Families ............................................. 353
    6.6. Harmonic Majorants and Minorants ..................... 358
    6.7. The Perron-Wiener-Brelot Operator .................... 359
    6.8. fig.4-harmonic Spaces: Wiener Resolutivity Theorem ....... 363
         6.8.1. Appendix: The Stone-Weierstrass Theorem ....... 366
    6.9. fig.5-harmonic Measures for Relatively Compact Open
         Sets ................................................. 367
    6.10. fig.4*-harmonic Spaces: Bouligand's Theorem ............. 370
    6.11. Reduced Functions and Balayage ...................... 375
    6.12. Exercises of Chapter 6 .............................. 378

7.  The fig.1-harmonic Space ...................................... 381
    7.1. The fig.1-harmonic Space ................................. 381
    7.2. Some Basic Definitions and Selecta of Properties ..... 388
    7.3. Exercises of Chapter 7 ............................... 392

8.  fig.2-subharmonic Functions ................................... 397
    8.1. Sub-mean Functions ................................... 397
    8.2. Some Characterizations of fig.2-subharmonic Functions .... 401
    8.3. Continuous Convex Functions on fig.6 ..................... 411
    8.4. Exercises of Chapter 8 ............................... 422

9.  Representation Theorems ................................... 425
    9.1. fig.2-Green Function for fig.2-regular Domains ............... 425
    9.2. fig.2-Green Function for General Domains ................. 427
    9.3. Potentials of Radon Measures ......................... 432
         9.3.1. Potentials Related to the Average Operators ... 435
    9.4. Riesz Representation Theorems for fig.2-subharmonic
         Functions ............................................ 441
    9.5. The Poisson-Jensen Formula ........................... 445
    9.6. Bounded-above fig.2-subharmonic Functions in fig.6 ........... 451
    9.7. Smoothing of fig.2-subharmonic Functions ................. 455
    9.8. Isolated Singularities—Bocher-type Theorems .......... 458
         9.8.1. An Application of Bocher's Theorem ............ 462
    9.9. Exercises of Chapter 9 ............................... 463

10. Maximum Principle on Unbounded Domains .................... 473
    10.1. MP Sets and fig.2-thinness at Infinity .................. 473
    10.2. q-sets and the Maximum Principle .................... 477
    10.3. The Maximum Principle on Unbounded Domains .......... 482
    10.4. The Proof of Lemma 10.2.3 ........................... 483
    10.5. Exercises of Chapter 10 ............................. 487

11. fig.2-capacity, fig.2-polar Sets and Applications ................. 489
    11.1. The Continuity Principle for fig.2-potentials ........... 489
    11.2. fig.2-polar Sets ........................................ 491
    11.3. The Maria-Frostman Domination Principle ............. 494
    11.4. fig.2-energy and fig.2-equilibrium Potentials ............... 497
    11.5. fig.2-balayage and fig.2-capacity ........................... 500
    11.6. The Fundamental Convergence Theorem ................. 510
    11.7. The Extended Poisson-Jensen Formula ................. 514
    11.8. Further Results. A Miscellanea ...................... 519
    11.9. Further Reading and the Quasi-continuity Property ... 527
    11.10. Exercises of Chapter 11 ............................ 533

12. fig.2-thinness and fig.2-fine Topology ............................ 537
    12.1. The fig.2-fine Topology: A More Intrinsic Tool .......... 537
    12.2. fig.2-thinness at a Point ............................... 538
    12.3. fig.2-thinness and fig.2-regularity ......................... 542
          12.3.1. Functions Peaking at a Point ................ 542
          12.3.2. fig.2-thinness and fig.2-regularity ................. 544
    12.4. Wiener's Criterion for Sub-Laplacians ............... 547
          12.4.1. A Technical Lemma ........................... 547
          12.4.2. Wiener's Criterion for fig.2 .................... 550
    12.5. Exercises of Chapter 12 ............................. 553

13. d-Hausdorff Measure and fig.2-capacity ........................ 557
    13.1. d-Hausdorff Measure and Dimension ................... 557
    13.2. d-Hausdorff Measure and fig.2-capacity .................. 561
    13.3. New Phenomena Concerning the d-Hausdorff
          Dimension ........................................... 569
    13.4. Exercises of Chapter 13 ............................. 572

Part III Further Topics on Carnot Groups

14. Some Remarks on Free Lie Algebras ......................... 577
    14.1. Free Lie Algebras and Free Lie Groups ............... 577
    14.2. A Canonical Way to Construct Free Carnot Groups ..... 584
          14.2.1. The Campbell-Hausdorff Composition ◊ ........ 584
          14.2.2. A Canonical Way to Construct Free Carnot
                  Groups ...................................... 586
    14.3. Exercises of Chapter 14 ............................. 589

15. More on the Campbell-Hausdorff Formula .................... 593
    15.1. The Campbell-Hausdorff Formula for Stratified
          Fields .............................................. 593
    15.2. The Campbell-Hausdorff Formula for Formal Power
          Series-1 ............................................ 599
    15.3. The Campbell-Hausdorff Formula for Formal Power
          Series-2 ............................................ 605
    15.4. The Campbell-Hausdorff Formula for Smooth Vector
          Fields .............................................. 610
    15.5. Exercises of Chapter 15 ............................. 616

16. Families of Difleomorphic Sub-Laplacians .................. 621
    16.1. An Isomorphism Turning ∑i,jai,jXiXj into ΔG ........... 622
    16.2. Examples and Counter-examples ....................... 628
    16.3. Canonical or Non-canonical? ......................... 637
          16.3.1. An Example .................................. 641
    16.4. Further Reading: An Application to PDE's ............ 644
    16.5. Exercises of Chapter 16 ............................. 645

17. Lifting of Carnot Groups .................................. 649
    17.1. Lifting to Free Carnot Groups ....................... 649
    17.2. An Example of Lifting ............................... 659
    17.3. An Example of Application to PDE's .................. 661
    17.4. Folland's Lifting of Homogeneous Vector Fields ...... 666
          17.4.1. The Hypotheses on the Vector Fields ......... 669
    17.5. Exercises of Chapter 17 ............................. 676

18. Groups of Heisenberg Type ................................. 681
    18.1. Heisenberg-type Groups .............................. 681
    18.2. A Direct Characterization of H-type Groups .......... 686
    18.3. The Fundamental Solution on H-type Groups ........... 695
    18.4. H-type Groups of Iwasawa-type ....................... 702
    18.5. The H-inversion and the H-Kelvin Transform .......... 704
    18.6. Exercises of Chapter 18 ............................. 709

19. The Caratheodory-Chow-Rashevsky Theorem ................... 715
    19.1. The Caratheodory-Chow-Rashevsky Theorem for
          Stratified Vector Fields ............................ 715
    19.2. An Application of Caratheodory-Chow-Rashevsky
          Theorem ............................................. 727
    19.3. Exercises of Chapter 19 ............................. 730

20. Taylor Formula on Carnot Groups ........................... 733
    20.1. Polynomials and Derivatives on Homogeneous Carnot
          Groups .............................................. 734
          20.1.1. Polynomial Functions on fig.6 ................... 734
          20.1.2. Derivatives on fig.6 ............................ 736
    20.2. Taylor Polynomials on Homogeneous Carnot Groups ..... 741
    20.3. Taylor Formula on Homogeneous Carnot Groups ......... 746
          20.3.1. Stratified Taylor Formula with Peano
                  Remainder ................................... 751
          20.3.2. Stratified Taylor Formula with Integral
                  Remainder ................................... 754
    20.4. Exercises of Chapter 20 ............................. 766

References .................................................... 773

Index of the Basic Notation ................................... 789

Index ......................................................... 795


 
Выставка новых поступлений  |  Поступления иностранных книг в библиотеки СО РАН : 2003 | 2006 |2008
 

[О библиотеке | Академгородок | Новости | Выставки | Ресурсы | Библиография | Партнеры | ИнфоЛоция | Поиск]
  © 1997–2024 Отделение ГПНТБ СО РАН  

Документ изменен: Wed Feb 27 14:52:16 2019. Размер: 22,168 bytes.
Посещение N 1672 c 26.04.2010