Bismut J.-M. The hypoelliptic Laplacian and Ray-Singer metrics (Princeton, 2008). - ОГЛАВЛЕНИЕ / CONTENTS
Навигация

 
Выставка новых поступлений  |  Поступления иностранных книг в библиотеки СО РАН : 2003 | 2006 |2008
ОбложкаBismut J.-M. The hypoelliptic Laplacian and Ray-Singer metrics / Bismut J.-M., Lebeau G. - Princeton: Princeton University press, 2008. - 367 p. - (Annals of mathematics studies; N 167). - ISBN 978-0-691-13732-2
 

Место хранения: 013 | Институт математики СО РАН | Новосибирск | Библиотека

Оглавление / Contents
 
Introduction .................................................... 1

Chapter 1. Elliptic Riemann-Roch-Grothendieck and flat vector
bundles ........................................................ 11
  1.1   The Clifford algebra ................................... 11
  1.2   The standard Hodge theory .............................. 12
  1.3   The Levi-Civita superconnection ........................ 14
  1.4   Superconnections and Poincaré duality .................. 15
  1.5   A group action ......................................... 16
  1.6   The Lefschetz formula .................................. 16
  1.7   The Riemann-Roch-Grothendieck theorem .................. 17
  1.8   The elliptic analytic torsion forms .................... 19
  1.9   The Chern analytic torsion forms ....................... 21
  1.10  Analytic torsion forms and Poincaré duality ............ 22
  1.11  The secondary classes for two metrics .................. 22
  1.12  Determinant bundle and Ray-Singer metric ............... 23

Chapter 2. The hypoelliptic Laplacian on the cotangent
bundle ......................................................... 25
  2.1   A deformation of Hodge theory .......................... 25
  2.2   The hypoelliptic Weitzenböck formulas .................. 29
  2.3   Hypoelliptic Laplacian and standard Laplacian .......... 30
  2.4   A deformation of Hodge theory in families .............. 33
  2.5   Weitzenböck formulas for the curvature ................. 35
  2.6   FΜΦb,±н-bωII, EΜ,2Φb,±н-bωII and Levi-Civita
        superconnection ........................................ 40
  2.7   The superconnection АΜΦ,н-ωII and Poincaré duality ...... 40
  2.8   A 2-parameter rescaling ................................ 41
  2.9   A group action ......................................... 43

Chapter 3. Hodge theory, the hypoelliptic Laplacian and its
heat kernel .................................................... 44
  3.1   The cohomology of T*X and the Thom isomorphism ......... 44
  3.2   The Hodge theory of the hypoelliptic Laplacian ......... 45
  3.3   The heat kernel for U2Φbнc ............................ 50
  3.4   Uniform convergence of the heat kernel as b→0 .......... 53
  3.5   The spectrum of U´2Φbн as b→0 ......................... 55
  3.6   The Hodge condition .................................... 58
  3.7   The hypoelliptic curvature ............................. 60

Chapter 4. Hypoelliptic Laplacians and odd Chern forms ......... 62
  4.1   The Berezin integral ................................... 63
  4.2   The even Chern forms ................................... 64
  4.3   The odd Chern forms and a 1-form on R*2 ................. 65
  4.4   The limit as t→0 of the forms ub,t, vb,t, wb,t ........... 68
  4.5   A fundamental identity ................................. 68
  4.6   A rescaling along the fibers of T*X .................... 69
  4.7   Localization of the problem ............................ 70
  4.8   Replacing T*X by TxX  T*xX and the rescaling of
        Clifford variables on T*X .............................. 76
  4.9   The limit as t→0 of the rescaled operator .............. 80
  4.10  The limit of the rescaled heat kernel .................. 82
  4.11  Evaluation of the heat kernel for Δv/4+ap ............. 87
  4.12  An evaluation of certain supertraces ................... 91
  4.13  A proof of Theorems 4.2.1 and 4.4.1 .................... 92

Chapter 5. The limit as t→0 and b→0 of the superconnection
forms .......................................................... 98
  5.1   The definition of the limit forms ...................... 98
  5.2   The convergence results ............................... 101
  5.3   A contour integral .................................... 102
  5.4   A proof of Theorem 5.3.1 .............................. 104
  5.5   A proof of Theorem 5.3.2 .............................. 104
  5.6   A proof of the first equations in (5.2.1) and
        (5.2.2) ............................................... 109

Chapter 6. Hypoelliptic torsion and the hypoelliptic
Ray-Singer metrics ............................................ 113
  6.1   The hypoelliptic torsion forms ........................ 113
  6.2   Hypoelliptic torsion forms and Poincare duality ....... 115
  6.3   A generalized Ray-Singer metric on the determinant
        of the cohomology ..................................... 116
  6.4   Truncation of the spectrum and Ray-Singer metrics ..... 120
  6.5   A smooth generalized metric on the determinant
        bundle ................................................ 122
  6.6   The equivariant determinant ........................... 123
  6.7   A variation formula ................................... 125
  6.8   A simple identity ..................................... 126
  6.9   The projected connections ............................. 126
  6.10  A proof of Theorem 6.7.2 .............................. 127

Chapter	7. The hypoelliptic torsion forms of a vector
bundle ........................................................ 131
  7.1   The function τ (c,η,x) ................................ 131
  7.2   Hypoelliptic curvature for a vector bundle ............ 133
  7.3   Translation invariance of the curvature ............... 134
  7.4   An automorphism of E .................................. 135
  7.5   The von Neumann supertrace of exp(-LEc) ................ 136
  7.6   A probabilistic expression for c .................... 138
  7.7   Finite dimensional supertraces and infinite
        determinants .......................................... 139
  7.8   The evaluation of the form Trs [g exp(-LEc)] ........... 148
  7.9   Some extra computations ............................... 152
  7.10  The Mellin transform of certain Fourier series ........ 155
  7.11  The hypoelliptic torsion forms for vector bundles ..... 160

Chapter 8. Hypoelliptic and elliptic torsions: a comparison
formula ....................................................... 162
  8.1   On some secondary Chern classes ....................... 162
  8.2   The main result ....................................... 163
  8.3   A contour integral .................................... 164
  8.4   Four intermediate results ............................. 165
  8.5   The asymptotics of the I0k ............................ 166
  8.6   Matching the divergences .............................. 169
  8.7   A proof of Theorem 8.2.1 .............................. 170

Chapter 9. A comparison formula for the Ray-Singer metrics .... 171

Chapter 10. The harmonic forms for b→0 and the formal Hodge
theorem ....................................................... 173
  10.1  A proof of Theorem 8.4.2 .............................. 173
  10.2  The kernel of A2Φнc as a formal power series .......... 175
  10.3  A proof of the formal Hodge Theorem ................... 178
  10.4  Taylor expansion of harmonic forms near b=0 ........... 180

Chapter 11. A proof of equation (8.4.6) ....................... 182
  11.1  The limit of the rescaled operator as t→0 ............. 182
  11.2  The limit of the supertrace as t→0 .................... 187
  11.3  A proof of equation (8.4.6) ........................... 189

Chapter 12. A proof of equation (8.4.8) ....................... 190
  12.1  Uniform rescalings and trivializations ................ 190
  12.2  A proof of (8.4.8) .................................... 192

Chapter 13. A proof of equation (8.4.7) ....................... 194
  13.1  The estimate in the range t≥bβ ........................ 194
  13.2  Localization of the estimate near π-1Xg ................ 196
  13.3  A uniform rescaling on the creation annihilation
        operators ............................................. 198
  13.4  The limit as t→0 of the rescaled operator ............. 200
  13.5  Replacing X by TXX .................................... 202
  13.6  A proof of (13.2.11) .................................. 205
  13.7  A proof of Theorem 13.6.2 ............................. 206

Chapter 14. The integration by parts formula .................. 214
  14.1  The case of Brownian motion ........................... 215
  14.2  The hypoelliptic diffusion ............................ 217
  14.3  Estimates on the heat kernel .......................... 219
  14.4  The gradient of the heat kernel ....................... 220

Chapter 15. The hypoelliptic estimates ........................ 224
  15.1  The operator U´2Φbн ................................. 224
  15.2  A Littlewood-Paley decomposition ...................... 226
  15.3  Projectivization of T*X and Sobolev spaces ............ 227
  15.4  The hypoelliptic estimates ............................ 229
  15.5  The resolvent on the real line ........................ 238
  15.6  The resolvent on С .................................... 240
  15.7  Trace class properties of the resolvent ............... 243

Chapter 16. Harmonic oscillator and the J0 function ........... 247
  16.1  Fock spaces and the Bargman transform ................. 247
  16.2  The operator В(ξ) ..................................... 249
  16.3  The spectrum of В(iξ) ................................. 251
  16.4  The function J0(у,λ) .................................. 253
  16.5  The resolvent of В(iξ)+P .............................. 261

Chapter 17. The limit of U´2Φbн as b→0 ....................... 264
  17.1  Preliminaries in linear algebra ....................... 268
  17.2  A matrix expression for the resolvent ................. 268
  17.3  The semiclassical Poisson bracket ..................... 270
  17.4  The semiclassical Sobolev spaces ...................... 271
  17.5  Uniform hypoelliptic estimates for Ph ................. 272
  17.6  The operator P0h and its resolvent Sh,λ for λ∈R ........ 277
  17.7  The resolvent Sh,λ for λ∈С ............................ 281
  17.8  A trivialization over X and the symbols Sd,kρ,σ,c ....... 283
  17.9  The symbol Q0h(x,ξ) - λ and its inverse е0,h,λ(х,ξ) ..... 289
  17.10 The parametrix for Sh ............................... 306
  17.11 A localization property for E0,E1 ..................... 307
  17.12 The operator P±Sh,λ .................................... 308
  17.13 A proof of equation (17.12.9) ......................... 309
  17.14 An extension of the parametrix to λ∈V ................ 318
  17.15 Pseudodifferential estimates for P±Sh,λi± .............. 319
  17.16 The operator Θh,λ ...................................... 323
  17.17 The operator Th,λ ...................................... 326
  17.18 The operator (J1/J0)(hDX/√2,λ) ......................... 329
  17.19 The operator Uh,λ ...................................... 331
  17.20 Estimates on the resolvent of Th,h2λ ................... 337
  17.21 The asymptotics of (Lc - λ)-1 .......................... 340
  17.22 A localization property ............................... 348

Bibliography .................................................. 353

Subject	Index ................................................. 359

Index of Notation ............................................. 361


 
Выставка новых поступлений  |  Поступления иностранных книг в библиотеки СО РАН : 2003 | 2006 |2008
 

[О библиотеке | Академгородок | Новости | Выставки | Ресурсы | Библиография | Партнеры | ИнфоЛоция | Поиск]
  © 1997–2024 Отделение ГПНТБ СО РАН  

Документ изменен: Wed Feb 27 14:52:16 2019. Размер: 17,465 bytes.
Посещение N 1281 c 26.04.2010