Biorthogonal systems in Banach spaces (New York, 2008). - ОГЛАВЛЕНИЕ / CONTENTS
Навигация

 
Выставка новых поступлений  |  Поступления иностранных книг в библиотеки СО РАН : 2003 | 2006 |2008
ОбложкаBiorthogonal systems in Banach spaces / Hájek A., Santalucí V.M., Vanderwerff J., Zizler V. - New York: Springer, 2008. - 339 p. - ISBN 0387689141
 

Место хранения: 013 | Институт математики СО РАН | Новосибирск | Библиотека

Оглавление / Contents
 
Preface ....................................................... VII

Standard Definitions, Notation, and Conventions .............. XVII

1. Separable Banach Spaces ...................................... 1
   1.1. Basics .................................................. 2
        Minimal systems; basic facts on biorthogonal systems
        (b.o.s.); fundamental minimal systems; Markushevich bases
        (M-bases); norming M-bases; shrinking b.o.s.;
        boundedly complete b.o.s.
   1.2. Auerbach Bases .......................................... 5
        Every finite-dimensional space has an Auerbach basis;
        Day's construction of a countable infinite Auerbach system
   1.3. Existence of M-bases in Separable Spaces ................ 8
        Markushevich theorem on the existence of M-bases in
        separable spaces; every space with a ω*-separable dual
        has a bounded total b.o.s.
   1.4. Bounded Minimal Systems ................................. 9
        Pelczyiiski-Plichko (1 + ε)-bounded M-basis theorem;
        no shrinking Auerbach systems in C(K) (Plichko)
   1.5. Strong M-bases ......................................... 21
        Terenzi's theorem on the existence of a strong M-basis in
        every separable space; flattened perturbations;
        Vershynin's proof of Terenzi's theorem; strong and norming
        M-bases; strong and shrinking M-bases
   1.6. Extensions of M-bases .................................. 29
        Gurarii-Kadets extension theorem; extension of bounded
        M-bases to bounded M-bases (Terenzi); extension of bounded
        M-bases and quotients; a negative result for extending
        Schauder bases; extension in the direction of
        quasicomplements (Milman)
   1.7. ω-independence ......................................... 38
        Relation to biorthogonal systems; every ω-independent
        system in a separable space is countable
        (Fremlin-Kalton-Sersouri)
   1.8. Exercises .............................................. 42

2. Universality and the Szlenk Index ........................... 45
   2.1. Trees in Polish Spaces ................................. 46
        Review of some techniques on trees in Polish spaces;
        Kunen-Martin result on well-founded trees in Polish spaces
   2.2. Universality for Separable Spaces ...................... 49
        Complementable universality of (unconditional) Schauder
        bases (Kadets-Pelczynski); no complementable universality
        for superreflexive spaces (Johnson-Szankowski);
        if a separable space is isomorphically universal for all
        reflexive separable spaces, then it is isomorphically
        universal for all separable spaces (Bourgain);
        in particular, there is no separable As-plund space
        universal for all separable reflexive spaces (Szlenk);
        there is no superreflexive space universal for all
        superreflexive separable spaces (Bourgain);
        there is a reflexive space with Schauder basis
        complementable universal for all superreflexive spaces
        with Schauder bases (Prus); there is a separable reflexive
        space universal for all separable superreflexive spaces
        (Odell-Schlumprecht)
   2.3. Universality of M-bases ................................ 57
        Iterated ω*-sequential closures of subspaces of dual
        spaces (Banach-Godun-Ostrovskij); no universality for
        countable M-bases (Plichko)
   2.4. Szlenk Index ........................................... 62
        Szlenk derivation; properties of the Szlenk index (Sz(X));
        for separable spaces, Sz(X) = ω if and only if X admits
        a UKK* renorming (Knaust-Odell-Schlumprecht)
   2.5. Szlenk Index Applications to Universality .............. 70
        Under GCH, if τ is an uncountable cardinal, there exists
        a compact space К of weight τ such that every space of
        density τ is isometrically isomorphic to a subspace of C(K)
        (Yesenin-Volpin); for infinite cardinality τ, there is no
        Asplund space of density τ universal for all reflexive
        spaces of density τ; there is no WCG space
        of density ω1 universal for all WCG spaces of
        density ω1 (Argyros-Benyamini)
   2.6. Classification of C[0, α] Spaces ....................... 73
        Mazurkiewicz-Sierpiriski representation of countable
        compacta; Bessaga-Pelczynski isomorphic classification
        of C(K) spaces for К countable compacta
        as spaces С[0,ωωα ] for α < ω1; Samuel's evaluation of the
        Szlenk index of those spaces
   2.7. Szlenk Index and Renormings ............................ 77
        ω*-dentability index Δ(X) of a space X; Asplund spaces
        with Δ(X) < ω1 have a dual LUR norm; characterization of
        superreflexivity by Δ(X) ≤ ω; estimating Δ(X) from
        above by Ψ(Sz(X))
   2.8. Exercises .............................................. 82
        
3. Review of Weak Topology and Renormings ...................... 87
   3.1. The Dual Mackey Topology ............................... 88
        Grothendieck's results on the Mackey topology on dual
        spaces
   3.2. Sequential Agreement of Topologies in X* ............... 92
        Characterizations of spaces not containing l1 by using the
        Mackey topology τ(Х*, X) in the dual; results of Emmanuele,
        Ørno and Valdivia
   3.3. Weak Compactness in ca (Σ)and L1(λ) .................... 95
        Weak compactness in L1(μ); weak compactness in ca(Σ);
        Grothendieck results on the Mackey topology
        τ(X*,X) in (L1(μ))* and (C(K))*; Josefson-Nissenzweig
        theorem
   3.4. Decompositions of Nonseparable Banach Spaces .......... 102
        Corson and Valdivia compacta; weakly Lindelöf-determined
        spaces; pro-jectional resolutions of the identity (PRI);
        projectional generators (PG); separable complementation
        property; every nonseparable space with a PG has a PRI;
        PG in WCG spaces
   3.5. Some Renorming Techniques ............................. 107
        LUR renorming of a space with strong M-basis (Troyanski);
        LUR renorming of subspaces of l closely related to
        σ-shrinkable M-bases; weak 2-rotund property of Day's
        norm on с0(Γ); Troyanski's results on uniform properties
        of the Day norm
   3.6. A Quantitative Version of Krein's Theorem ............. 119
        Closed convex hulls of e-weakly relatively compact sets
   3.7. Exercises ............................................. 125

4. Biorthogonal Systems in Nonseparable Spaces ................ 131
   4.1. Long Schauder Bases ................................... 132
        Uncountable version of Mazur's technique; bounded total
        b.o.s. in every space
   4.2. Fundamental Biorthogonal Systems ...................... 137
        The existence of fundamental biorthogonal systems
        (f.b.o.s.) implies the existence of bounded f.b.o.s;
        lifting f.b.o.s. from quotients; f.b.o.s. in l; 
        f.b.o.s. in Johnson-Lindenstrauss spaces (JL);
        lc(Γ) has an f.b.o.s. iff card Γ < с
   4.3. Uncountable Biorthogonal Systems in ZFC ............... 143
        Uncountable b.o.s. in C(K) when К contains a nonseparable
        subset; b.o.s. in representable spaces; every nonseparable
        dual space contains an uncountable b.o.s.
   4.4. Nonexistence of Uncountable Biorthogonal Systems ...... 148
        Under axiom ♣ there is a scattered nonmetrizable compact К
        such that (C(K))* is hereditarily ω*-separable and C(K) is
        hereditarily weakly Lindelof; in particular, C(K) does not
        contain an uncountable b.o.s.
   4.5. Fundamental Systems under Martin's Axiom .............. 152
        Under Martin's axiom МАω1, any Banach space with
        density ω1 with a ω*-countably tight dual unit ball has
        an f.b.o.s.; under Martin's Maximum (MM), any Banach space
        of density ω1 has an f.b.o.s. (Todorcevic)
   4.6. Uncountable Auerbach Bases ............................ 158
        Any nonseparable space with a ω*-separable dual ball has
        a norm with no Auerbach basis (Godun-Lin-Troyanski)
   4.7. Exercises ............................................. 161

5. Markushevich Bases ......................................... 165
   5.1. Existence of Markushevich Bases ....................... 165
        fig.1-classes; every space in a fig.1-class has a strong M-basis;
        spaces with M-bases and injections into с0(Γ); spaces with
        strong M-bases failing the separable complementation
        property; the space l(Γ) for infinite Γ has no
        M-basis (Johnson)
   5.2. M-bases with Additional Properties .................... 170
        Every space with an M-basis has a bounded M-basis;
        WCG spaces without a 1-norming M-basis and variations;
        C[0,ω1] has no norming M-basis; countably norming M-bases
   5.3. Σ-subsets of Compact Spaces ........................... 176
        Topological properties of Valdivia compacta;
        Deville-Godefroy-Kalenda-Valdivia results
   5.4. WLD Banach Spaces and Plichko Spaces .................. 179
        WLD spaces and full PG; characterizations of WLD spaces
        in terms of M-bases; weakly Lindelöf property of WLD
        spaces; property С of Corson; Plichko spaces;
        Kalenda's characterization of WLD spaces by PRI
        when dens X = ω1; spaces with ω*-angelic dual balls
        without M-bases
   5.5. C(K) Spaces that Are WLD .............................. 187
        Corson compacta with property M; under CH, example of a
        Corson compact L such that C(L) has a renorming without
        PRI; on the other hand, under Martin's axiom МАω1, every
        Corson compact has property M
   5.6. Extending M-bases from Subspaces ...................... 191
        Extensions from subspaces of WLD spaces; the bounded case
        for dens X < fig.2ω; c0(Γ) is complemented in every Plichko
        overspace if card Γ < fig.2ω; on the other hand, under GCH,
        со(fig.2ω) may not be complemented in a WCG overspace;
        extensions of M-bases when the quotient is separable;
        under ♣, example of a space with M-basis having a
        complemented subspace with M-basis that cannot be extended
        to the full space
   5.7. Quasicomplements ...................................... 197
        M-bases and quasicomplements;
        the Johnson-Lindenstrauss-Rosenthal theorem that Y is
        quasicomplemented in X whenever Y* is ω* -separable and X/Y
        has a separable quotient; every subspace of l is
        quasicomplemented; Godun's results on quasicomplements
        in l; quasicomplements in Grothendieck spaces;
        Josefson's theorems on limited sets; quasicomple-mentation
        of Asplund subspaces in l(Γ) iff X* is ω*-separable; in
        particular, c0(Γ) is not quasicomplemented inl(Γ)
        whenever Γ is uncountable (Lindenstrauss); the separable
        infinite-dimensional quotient problem
   5.8. Exercises ............................................. 203

6. Weak Compact Generating .................................... 207
   6.1. Reflexive and WCG Asplund Spaces ...................... 207
        Characterization of reflexivity by M-bases and by
        2R norms; characterization of WCG Asplund spaces
   6.2. Reflexive Generated and Vasak Spaces .................. 212
        Reflexive- and Hilbert-generated spaces; Frechet M-smooth
        norms; weakly compact and σ-compact M-bases; M-basis
        characterization of WCG spaces; weak dual 2-rotund
        characterization of WCG; σ-shrinkable M-bases; M-basis
        characterization of subspaces of WCG spaces; continuous
        images of Eberlein compacts (Benyamini, Rudin,Wage);
        weakly σ-shrinkable M-bases; M-basis characterization
        of Vasak spaces; M-basis characterization of WLD spaces
   6.3. Hilbert Generated Spaces .............................. 225
        M-basis characterization of Hilbert-generated spaces;
        uniformly Gateaux (UG) smooth norms; uniform Eberlein
        compacts; M-basis characterization of spaces with UG
        norms; characterizations of Eberlein, uniform Eberlein,
        and Gul'ko compacts (Farmaki); continuous images of
        uniform Eberlein compacts (Benyamini, Rudin, Wage)
   6.4. Strongly Reflexive and Superreflexive Generated
        Spaces ................................................ 233
        Metrizability of Bx* in the Mackey topology τ(Х*,Х)\ weak
        sequential completeness of strongly reflexive generated
        spaces (Edgar-Wheeler); applications of strongly
        superreflexive generated spaces to L1(μ);
        super-reflexivity of reflexive subspaces of L1(μ)
        (Rosenthal); uniform Eberlein compacta in L1(μ);
        almost shrinking M-bases (Kalton)
   6.5. Exercises ............................................. 239

7. Transfinite Sequence Spaces ................................ 241
   7.1. Disjointization of Measures and Applications .......... 241
        Rosenthal disjointization of measures; applications to
        fixing c0(Г) and l(Г) in C(K) (Pelczynski, Rosenthal);
        applications to weakly compact operators; subspaces
        of c0(Г) and containment of c0(Г) in C(K) spaces
   7.2. Banach Spaces Containing l1(Г) ........................ 252
        Characterization of spaces containing l1(Г) by properties
        of dual unit balls and quotients (Pelczynski, Argyros,
        Talagrand, Haydon)
   7.3. Long Unconditional Bases .............................. 259
        Characterization of Asplund, WCG (Johnson), WLD
        (Argyros-Mercourakis), strongly reflexive-generated
        (Mercourakis-Stamati), UG or URED renormable (Troyanski)
        spaces with unconditional bases
   7.4. Long Symmetric Bases .................................. 266
        Troyanski's characterizations of spaces with symmetric
        basis having a UG or URED norm; applications to separable
        spaces
   7.5. Exercises ............................................. 270

8. More Applications .......................................... 273
   8.1. Biorthogonal Systems and Support Sets ................. 273
        There are no separable support sets (Rolewicz); X has
        a bounded support set iff it has an uncountable
        semibiorthogonal system; if К is a non-metrizable
        scattered compact, then C(K) has a support set; under MM,
        a space is separable iff there is no support set
        (Todorcevic); consistency of the existence of nonseparable
        spaces without support sets
   8.2. Kunen-Shelah Properties in Banach Spaces .............. 276
        Representation of closed convex sets as kernels of
        nonnegative C functions; representation of closed convex
        sets as intersections of countably many half-spaces
        and ω*-separability; ω1 -polyhedrons; for a separable
        space X, X* is separable iff every dual ball
        in X** is ω*-separable; if X* is ω*-hereditarily
        separable (e.g., X = C(L) for L in Theorem 4.41),
        then X has no uncountable ω-independent system
   8.3. Norm-Attaining Operators .............................. 284
        Lindenstrauss' properties α and β; renormings and
        norm-attaining operators; renorming spaces to have
        property α (Godun, Troyanski)
   8.4. Mazur Intersection Properties ......................... 289
        Characterizations of spaces with the Mazur intersection
        property (MIP); Asplund spaces without MIP renormings
        (Jimenez-Sevilla, Moreno); equivalence of Asplundness and
        MIP in separable spaces; if X admits a b.o.s. {хγ;х*γ}γfig.3Γ
        such that fig.4{x*γ; γ fig.5 Г} = X*, then X has an MIP
        renorming; the non-Asplund space l1 × l2(c) has an MIP
        renorming (Jimenez-Sevilla, Moreno)
   8.5. Banach Spaces with only Trivial Isometries ............ 297
        Every space can be renormed to have only ±identity
        as isometries
   8.6. Exercises ............................................. 300

References .................................................... 303

Symbol Index .................................................. 323

Subject Index ................................................. 327

Author Index .................................................. 335


 
Выставка новых поступлений  |  Поступления иностранных книг в библиотеки СО РАН : 2003 | 2006 |2008
 

[О библиотеке | Академгородок | Новости | Выставки | Ресурсы | Библиография | Партнеры | ИнфоЛоция | Поиск]
  © 1997–2024 Отделение ГПНТБ СО РАН  

Документ изменен: Wed Feb 27 14:52:16 2019. Размер: 21,901 bytes.
Посещение N 1679 c 26.04.2010