Bertram W. Differential geometry (Providence, 2008). - ОГЛАВЛЕНИЕ / CONTENTS
Навигация

 
Выставка новых поступлений  |  Поступления иностранных книг в библиотеки СО РАН : 2003 | 2006 |2008
ОбложкаBertram W. Differential geometry, Lie groups, and symmetric spaces over general base fields and rings. - Providence: AMS, 2008. - 202 p. - (Memoirs of the American mathematical society; N 900). - ISSN 0065-9266; ISBN 9780821840917
 

Место хранения: 013 | Институт математики СО РАН | Новосибирск | Библиотека

Оглавление / Contents
 
Introduction .................................................... 1

I.   Basic, notions
     1.  Differential calculus ................................. 14
     2.  Manifolds ............................................. 20
     3.  Tangent bundle and general fiber bundles .............. 22
     4.  The Lie bracket of vector fields ...................... 25
     5.  Lie groups and symmetric spaces: basic facts .......... 30

II.  Interpretation of tangent objects via scalar extensions
     6.  Scalar extensions. I: Tangent functor and dual
         numbers ............................................... 36
     7.  Scalar extensions. II: Higher order tangent
         functors .............................................. 42
     8.  Scalar extensions. Ill: Jet functor and truncated
         polynomial rings ...................................... 50

III. Second order differential geometry
     9.  The structure of the tangent bundle of a vector
         bundle ................................................ 57
     10. Linear connections. I: Linear structures on bilinear
         bundles ............................................... 61
     11. Linear connections. II: Sprays ........................ 68
     12. Linear connections. Ill: Covariant derivative ......... 71
     13. Natural operations. I: Exterior derivative of a
         one-form .............................................. 73
     14. Natural operations. II: The Lie bracket revisited ..... 75

IV.  Third and higher order differential geometry
     15. The structure of TkF: Multilinear bundles ............. 79
     16. The structure of TkF: Multilinear connections ......... 83
     17. Construction of multilinear connections ............... 87
     18. Curvature ............................................. 91
     19. Linear structures on jet bundles ...................... 95
     20. Shifts and symmetrization ............................. 98
     21. Remarks on differential operators and symbols ........ 102
     22. The exterior derivative .............................. 106

V.   Lie Theory
     23. The three canonical connections of a Lie group ....... 110
     24. The structure of higher order tangent groups ......... 116
     25. Exponential map and Campbell-Hausdorff formula ....... 124
     26. The canonical connection of a symmetric space ........ 128
     27. The higher order tangent structure of symmetric
         spaces ............................................... 134

VI.  Diffeomorphism Groups and the exponential jet
     28. Group structure on the space of sections of TkM ...... 139
     29. The exponential jet for vector fields ................ 144
     30. The exponential jet of a symmetric space ............. 148
     31. Remarks on the exponential jet of a general
         connection ........................................... 151
     32. From germs to jets and from jets to germs ............ 153

Appendix L. Limitations ....................................... 156

Appendix G. Generalizations ................................... 159

Appendix: Multilinear Geometry

      BA. Bilinear algebra .................................... 161
      MA. Multilinear algebra ................................. 168
      SA. Symmetric and shift invariant multilinear algebra ... 182
      PG. Polynomial groups ................................... 192

References .................................................... 199


 
Выставка новых поступлений  |  Поступления иностранных книг в библиотеки СО РАН : 2003 | 2006 |2008
 

[О библиотеке | Академгородок | Новости | Выставки | Ресурсы | Библиография | Партнеры | ИнфоЛоция | Поиск]
  © 1997–2024 Отделение ГПНТБ СО РАН  

Документ изменен: Wed Feb 27 14:52:16 2019. Размер: 7,150 bytes.
Посещение N 1404 c 26.04.2010