Verity D. Complicial sets characterising the simplical nerves of strict omega-categories (Providence, 2008). - ОГЛАВЛЕНИЕ / CONTENTS
Навигация

 
Выставка новых поступлений  |  Поступления иностранных книг в библиотеки СО РАН : 2003 | 2006 |2008
ОбложкаVerity D. Complicial sets characterising the simplicial nerves of strict [w]-categories / Verity D. - Providence, R.I.: American Mathematical Society, 2008. - 184 p. - (Memoirs of the American Mathematical Society; Vol. 193, N 905). - ISBN 0821841424
 

Место хранения: 013 | Институт математики СО РАН | Новосибирск | Библиотека

Оглавление / Contents
 
Preface ........................................................ ix
Historical Background .......................................... ix
Relationships to Other Work ................................... xii
Overview and Structure ....................................... xiii

Chapter 1. Simplicial Operators and Simplicial Sets ............. 1
1. Simplicial Operators ......................................... 1
2. The Algebraist's Δ and 2-Categories .......................... 3
3. The Algebraist's Δ and Monoidal Categories ................... 6
4. Simplicial Sets ............................................. 10
5. Semi-Simplicial Sets ........................................ 14
6. Analysing Products of Simplicial Sets - the Theory of
   Shuffles .................................................... 15

Chapter 2. A Little Categorical Background ..................... 21
1. Reflective Full Subcategories ............................... 21
2. LFP-Categories and LE-Theories .............................. 25

Chapter 3. Double Categories, 2-Categories and n-Categories .... 33
1. Categories in the Small ..................................... 33
2. Double Categories ........................................... 36
3. 2-Categories and Double Categories with Connections ......... 38
4. n-Categories and ω-Categories ............................... 43

Chapter 4. An Introduction to the Decalage Construction ........ 47
1. Nerves and Decalage ......................................... 47
2. Comonad Transformations and Simplicial Reconstruction ....... 49

Chapter 5. Stratifications and Filterings of Simplicial Sets ... 55
1. Stratified Simplicial Sets .................................. 55
2. Superstructures and Filtered Semi-Simplicial Sets ........... 61

Chapter 6. Pre-Complicial Sets ................................. 65
1. Introducing Pre-Complicial Sets ............................. 65
2. Tensor Products of Pre-Complicial Sets ...................... 66
3. Pre-Tensors and Preservation of t-Extensions ................ 71
4. Some Other Preservation Properties .......................... 78
5. A Monoidal Biclosed Structure on Pre-Complicial sets ........ 80
6. Superstructures of Pre-Complicial Sets ...................... 83

Chapter 7. Complicial Sets ..................................... 85
1. Introducing Complicial Sets ................................. 85
2. Glueing Squares and Filling Lemmas .......................... 86
3. Tensor Products and Complicial Sets ......................... 90
4. Superstructures of Complicial Sets ......................... 102

Chapter 8. The Path Category Construction ..................... 105
1. The Complicial Category of Prisms .......................... 105
2. Path Categories and Superstructures ........................ 108
3. A Complicial Double Category with Connections .............. 110

Chapter 9. Complicial Decalage Constructions .................. 115
1. A Decalage Construction on Complicial Sets ................. 115
2. A Path Construction on Complicially Enriched Categories .... 120
3. A Decalage Construction on Complicially Enriched
   Categories ................................................. 125
4. Semi-Simplicial Reconstruction ............................. 127

Chapter 10. Street's ω-Categorical Nerve Construction ......... 133
1. Parity Complexes ........................................... 133
2. Collapsers and Stratified Parity Complexes ................. 147
3. ω-Categorical Nerve Constructions .......................... 150
4. Products of Parity Complexes and the Complicial Tensor ..... 155
5. An Inductive Proof of the Street-Roberts Conjecture ........ 163

Bibliography .................................................. 173


 
Выставка новых поступлений  |  Поступления иностранных книг в библиотеки СО РАН : 2003 | 2006 |2008
 

[О библиотеке | Академгородок | Новости | Выставки | Ресурсы | Библиография | Партнеры | ИнфоЛоция | Поиск]
  © 1997–2024 Отделение ГПНТБ СО РАН  

Документ изменен: Wed Feb 27 14:52:16 2019. Размер: 7,608 bytes.
Посещение N 1269 c 26.04.2010