Todorcevic S. Walks on ordinals and their characteristics (Basel, 2007) - ОГЛАВЛЕНИЕ / CONTENTS
Навигация

 
Выставка новых поступлений  |  Поступления иностранных книг в библиотеки СО РАН : 2003 | 2006 |2008
ОбложкаTodorcevic S. Walks on ordinals and their characteristics. - Basel: Birkhäuser, 2007. - 324 p. - (Progress in mathematics; Vol. 263). - ISBN 978-3-7643-8528-6
 

Место хранения: 013 | Институт математики СО РАН | Новосибирск | Библиотека

Оглавление / Contents
 
1.  Introduction
    1.1.  Walks and the metric theory of ordinals ............... 1
    1.2.  Summary of results ................................... 10
    1.3.  Prerequisites and notation ........................... 17
    1.4.  Acknowledgements ..................................... 18

2.  Walks on Countable Ordinals
    2.1.  Walks on countable ordinals and their basic
          characteristics ...................................... 19
    2.2.  The coherence of maximal weights ..................... 29
    2.3.  Oscillations of traces ............................... 40
    2.4.  The number of steps and the last step functions ...... 47

3.  Metric Theory of Countable Ordinals
    3.1.  Triangle inequalities ................................ 55
    3.2.  Constructing a Souslin tree using ρ .................. 58
    3.3.  A Hausdorff gap from ρ ............................... 63
    3.4.  A general theory of subadditive functions on ω1 ...... 66
    3.5.  Conditional weakly null sequences based on
          subadditive functions ................................ 77

4.  Coherent Mappings and Trees
    4.1.  Coherent mappings .................................... 91
    4.2.  Lipschitz property of coherent trees ................. 95
    4.3.  The global structure of the class of coherent
          trees ............................................... 108
    4.4.  Lexicographically ordered coherent trees ............ 124
    4.5.  Stationary C-lines .................................. 128

5.  The Square-bracket Operation on Countable Ordinals
    5.1.  The upper trace and the square-bracket operation .... 133
    5.2.  Projecting the square-bracket operation ............. 139
    5.3.  Some geometrical applications of the
          square-bracket operation ............................ 144
    5.4.  A square-bracket operation from a special
          Aronszajn tree ...................................... 152
    5.5.  A square-bracket operation from the complete
          binary tree ......................................... 157

6.  General Walks and Their Characteristics
    6.1.  The full code and its application in
          characterizing Mahlo cardinals ...................... 161
    6.2.  The weight function and its local versions .......... 174
    6.3.  Unboundedness of the number of steps ................ 178

7.  Square Sequences
    7.1.  Square sequences and their full lower traces ........ 187
    7.2.  Square sequences and local versions of ρ ............ 195
    7.3.  Special square sequence and the corresponding
          function ρ .......................................... 202
    7.4.  The function ρ on successors of regular cardinals ... 205
    7.5.  Forcing constructions based on ρ .................... 213
    7.6.  The function ρ on successors of singular
          cardinals ........................................... 220

8.  The Oscillation Mapping and the Square-bracket Operation
    8.1.  The oscillation mapping ............................. 233
    8.2.  The trace filter and the square-bracket operation ... 243
    8.3.  Projections of the square-bracket operation on
          accessible cardinals ................................ 251
    8.4.  Two more variations on the square-bracket
          operation ........................................... 257

9.  Unbounded Functions
    9.1.  Partial square-sequences ............................ 271
    9.2.  Unbounded subadditive functions ..................... 273
    9.3.  Chang's conjecture and Θ2 ........................... 277
    9.4.  Higher dimensions and the continuum hypothesis ...... 283

10. Higher Dimensions
    10.1. Stepping-up to higher dimensions .................... 289
    10.2. Chang's conjecture as a 3-dimensional
          Ramsey-theoretic statement .......................... 294
    10.3. Three-dimensional oscillation mapping ............... 298
    10.4. Two-cardinal walks .................................. 305

Bibliography .................................................. 313
Index ......................................................... 321


 
Выставка новых поступлений  |  Поступления иностранных книг в библиотеки СО РАН : 2003 | 2006 |2008
 

[О библиотеке | Академгородок | Новости | Выставки | Ресурсы | Библиография | Партнеры | ИнфоЛоция | Поиск]
  © 1997–2024 Отделение ГПНТБ СО РАН  

Документ изменен: Wed Feb 27 14:52:14 2019 Размер: 7,866 bytes.
Посещение N 1198 c 26.04.2010