Spectral methods. Evolution to complex geometries and applications to fluid dynamics (Berlin, 2007) - ОГЛАВЛЕНИЕ / CONTENTS
Навигация

 
Выставка новых поступлений  |  Поступления иностранных книг в библиотеки СО РАН : 2003 | 2006 |2008
ОбложкаSpectral methods. Evolution to complex geometries and applications to fluid dynamics / ed. by Canuto C.G., Hussaini M.Y., Quarteroni A., Zang T.A. - Berlin, Heidelberg: Springer-Verlag GmbH., 2007. - 596 p. - (Scientific computation). - ISSN 1434-8322; ISBN 978-540-30727-3
 

Место хранения: 013 | Институт математики СО РАН | Новосибирск | Библиотека

Оглавление / Contents
 
1.  Fundamentals of Fluid Dynamics .............................. 1
    1.1.  Introduction .......................................... 1
    1.2.  Fluid Dynamics Background ............................. 1
          1.2.1.  Phases of Matter .............................. 2
          1.2.2.  Thermodynamic Relationships ................... 3
          1.2.3.  Historical Perspective ........................ 6
    1.3.  Compressible Fluid Dynamics Equations ................. 7
          1.3.1.  Compressible Navier-Stokes Equations .......... 8
          1.3.2.  Nondimensionalization ........................ 12
          1.3.3.  Navier-Stokes Equations with Turbulence
                  Models ....................................... 13
          1.3.4.  Compressible Euler Equations ................. 17
          1.3.5.  Compressible Potential Equation .............. 17
          1.3.6.  Compressible Boundary-Layer Equations ........ 19
          1.3.7.  Compressible Stokes Limit .................... 20
          1.3.8.  Low Mach Number Compressible Limit ........... 21
    1.4.  Incompressible Fluid Dynamics Equations .............. 21
          1.4.1.  Incompressible Navier-Stokes Equations ....... 21
          1.4.2.  Incompressible Navier-Stokes Equations
                  with Turbulence Models ....................... 22
          1.4.3.  Vorticity-Streamfunction Equations ........... 25
          1.4.4.  Vorticity-Velocity Equations ................. 26
          1.4.5.  Incompressible Boundary-Layer Equations ...... 27
    1.5.  Linear Stability of Parallel Flows ................... 27
          1.5.1.  Incompressible Linear Stability .............. 29
          1.5.2.  Compressible Linear Stability ................ 31
    1.6.  Stability Equations for Nonparallel Flows ............ 36

2.  Single-Domain Methods for Stability Analysis ............... 39
    2.1.  Introduction ......................................... 39
    2.2.  Boundary-Layer Flows ................................. 41
          2.2.1.  Incompressible Boundary-Layer Flows .......... 41
          2.2.2.  Compressible Boundary-Layer Flows ............ 48
    2.3.  Linear Stability of Incompressible Parallel Flows .... 52
          2.3.1.  Spectral Approximations for Plane
                  Poiseuille Flow .............................. 52
          2.3.2.  Numerical Examples for Plane Poiseuille
                  Flow ......................................... 57
          2.3.3.  Some Other Incompressible Linear Stability
                  Problems ..................................... 61
    2.4.  Linear Stability of Compressible Parallel Flows ...... 64
    2.5.  Nonparallel Linear Stability ......................... 69
          2.5.1.  Linear Parabolized Stability Equations ....... 69
          2.5.2.  Two-Dimensional Global Stability Analysis .... 71
    2.6.  Transient Growth Analysis ............................ 72
    2.7.  Nonlinear Stability .................................. 75
          2.7.1.  Quasi-Steady Finite-Amplitude Solutions ...... 75
          2.7.2.  Secondary Instability Theory ................. 77
          2.7.3.  Nonlinear Parabolized Stability Equations .... 81

3.  Single-Domain Methods for Incompressible Flows ............. 83
    3.1.  Introduction ......................................... 83
    3.2.  Conservation Properties and Time-Discretization ...... 86
          3.2.1.  Conservation Properties ...................... 86
                  The Rotation Form ............................ 88
                  The Skew-Symmetric Form ...................... 90
                  Convection and Divergence Forms .............. 92
          3.2.2.  General Guidelines for Time-Discretization ... 92
          3.2.3.  Coupled Methods .............................. 93
                  Fully Implicit Schemes ....................... 93
                  Semi-Implicit Schemes ........................ 93
          3.2.4.  Splitting Methods ............................ 95
          3.2.5.  Other Integration Methods .................... 96
                  Operator Integration Factors ................. 96
                  Characteristics Methods ...................... 97
    3.3.  Homogeneous Flows .................................... 98
          3.3.1.  Fourier Galerkin Approximation for
                  Isotropic Turbulence ......................... 98
          3.3.2.  De-aliasing Using Transform Methods .......... 99
          3.3.3.  Pseudospectral and Collocation Methods ...... 103
          3.3.4.  Rogallo Transformation for Homogeneous
                  Turbulence .................................. 106
          3.3.5.  Large-Eddy Simulation of Isotropic
                  Turbulence .................................. 108
          3.3.6.  The Taylor-Green Vortex Example:
                  Stability, Accuracy and Aliasing ............ 110
    3.4.  Flows with One Inhomogeneous Direction .............. 121
          3.4.1.  Coupled Methods ............................. 123
                  Kleiser-Schumann Algorithm .................. 124
                  Normal Velocity-Normal Vorticity
                  Algorithms .................................. 127
          3.4.2.  Galerkin Methods Using Divergence-Free
                  Bases ....................................... 131
          3.4.3.  Splitting Methods ........................... 133
                  Chebyshev Staggered Grid .................... 133
                  Zang-Hussaini Algorithm ..................... 135
          3.4.4.  Other Confined Flows ........................ 138
          3.4.5.  Unbounded Flows ............................. 140
                  Flat-Plate Boundary-Layer Flows ............. 140
                  Free-Shear-Layer Flows ...................... 142
          3.4.6.  A Numerical Example: Accuracy ............... 144
    3.5.  Flows with Multiple Inhomogeneous Directions ........ 147
          3.5.1.  The Choice of Spatial Discretization in a
                  Cavity ...................................... 149
          3.5.2.  The Choice of Spatial Discretization on a
                  Reference Domain ............................ 157
    3.6.  Outflow Boundary Conditions ......................... 159
          3.6.1.  Fringe Regions .............................. 159
          3.6.2.  Buffer Domains .............................. 161
    3.7.  Analysis of Spectral Methods for Incompressible
          Flows ............................................... 162
          3.7.1.  Compatibility Conditions Between Velocity
                  and Pressure ................................ 165
          3.7.2.  Direct Discretization of the Continuity
                  Equation: The Inf-sup Condition ............. 168
                  General Theory .............................. 169
          3.7.3.  Specific Applications ....................... 172
                  Numerical Results ........................... 177
                  Extensions .................................. 178
          3.7.4.  The Inf-sup Condition and the Pressure
                  Operator .................................... 179
          3.7.5.  Discretizations of the Continuity Equation
                  by an Influence-Matrix Technique: The
                  Kleiser-Schumann Method ..................... 183

4.  Single-Domain Methods for Compressible Flows .............. 187
    4.1.  Introduction ........................................ 187
    4.2.  Boundary Treatment for Hyperbolic Systems ........... 187
          4.2.1.  Characteristic Compatibility Conditions ..... 188
                  An Example of Unstable Treatment ............ 188
                  The Characteristic Compatibility Method
                  (CCM) ....................................... 189
                  CCM for a General ID System ................. 192
                  CCM for the Collocation Method .............. 193
                  CCM for a General Multidimensional
                  System ...................................... 195
                  References and Outlook ...................... 196
          4.2.2.  Boundary Treatment for Linear Systems in
                  Weak Formulations ........................... 197
          4.2.3.  Spectral Accuracy and Conservation .......... 199
          4.2.4.  Analysis of Spectral Methods for Symmetric
                  Hyperbolic Systems .......................... 200
    4.3.  Boundary Treatment for the Euler Equations .......... 203
    4.4.  High-Frequency Control .............................. 208
    4.5.  Homogeneous Turbulence .............................. 211
          4.5.1.  Algorithmic Considerations .................. 211
          4.5.2.  Representative Applications ................. 214
    4.6.  Smooth, Inhomogeneous Flows ......................... 218
          4.6.1.  Euler Equations ............................. 218
          4.6.2.  Navier-Stokes Equations ..................... 221
          4.6.3.  Numerical Example ........................... 224
    4.7.  Shock Fitting ....................................... 226
    4.8.  Shock Capturing ..................................... 233

5.  Multidomain Discretizations ............................... 237
    5.1.  Introduction ........................................ 237
    5.2.  The Spectral Element Method (SEM) in ID ............. 239
          5.2.1.  SEM Formulation ............................. 239
          5.2.2.  Construction of SEM Basis Functions ......... 241
          5.2.3.  SEM-NI and its Collocation Interpretation ... 243
    5.3.  SEM for Multidimensional Problems ................... 245
          5.3.1.  Construction of SEM Function Spaces ......... 245
          5.3.2.  Construction of SEM Basis Functions ......... 247
          5.3.3.  SEM and SEM-NI Formulations ................. 250
          5.3.4.  Algebraic Aspects of SEM and SEM-NI ......... 252
          5.3.5.  Finite-Element Preconditioning of SEM-NI
                  Matrices .................................... 253
    5.4.  Analysis of SEM and SEM-NI Approximations ........... 257
          5.4.1.  One-Dimensional Analysis .................... 257
                  A Priori Error Analysis for SEM ............. 258
                  A Priori Analysis for SEM-NI ................ 260
                  A Posteriori Error Analysis ................. 261
          5.4.2.  Multidimensional Analysis ................... 263
                  A Priori Error Analysis ..................... 264
                  A Posteriori Error Analysis ................. 265
          5.4.3.  Some Proofs ................................. 268
    5.5.  Some Numerical Results for the SEM-NI
          Approximations ...................................... 273
          5.5.1.  Error Decay vs. N and h ..................... 273
          5.5.2.  Eigenfunction Approximation ................. 275
    5.6.  SEM for Stokes and Navier-Stokes Equations .......... 278
          5.6.1.  SEM and SEM-NI Formulations ................. 279
          5.6.2.  Stability and Convergence Analysis .......... 283
                  Proof of the Global Inf-sup Condition ....... 285
          5.6.3.  Numerical Results ........................... 286
    5.7.  The Mortar Element Method (MEM) ..................... 289
          5.7.1.  Formulation of MEM .......................... 290
          5.7.2.  Algebraic Aspects of MEM .................... 294
          5.7.3.  Analysis of MEM ............................. 296
          5.7.4.  Other Applications .......................... 299
    5.8.  The Spectral Discontinuous Galerkin Method (SDGM)
          in ID ............................................... 300
          5.8.1.  Linear Advection Problems in ID ............. 301
          5.8.2.  Linear Hyperbolic Systems in ID ............. 303
          5.8.3.  Time-Dependent Problems ..................... 308
          5.8.4 Nonlinear Conservation Laws in ID ............. 313
    5.9.  SDGM for Multidimensional Problems .................. 316
          5.9.1.  Multidimensional Formulation ................ 317
                  Linear Problems ............................. 317
                  Nonlinear Conservation Laws ................. 319
          5.9.2.  The Mortar Technique for Geometrical
                  Nonconformities ............................. 321
    5.10. SDGM for Diffusion Equations ........................ 323
    5.11. Analysis of SDGM .................................... 326
    5.12. SDGM for Euler and Navier-Stokes Equations .......... 332
          Approximate Numerical Fluxes ........................ 332
          Time-Discretizations ................................ 333
          Numerical Examples .................................. 334
          Shock Tracking ...................................... 337
    5.13. The Patching Method ................................. 339
          5.13.1. Formulation of Patching Methods ............. 339
          5.13.2. Comparison of Patching and SEM-NI ........... 343
          5.13.3. Collocation Methods for the Euler
                  Equations ................................... 345
                  Collocation Using a Nonstaggered Grid ....... 346
                  Collocation Using a Staggered Grid .......... 348
                  Multidomain Shock Fitting ................... 350
    5.14. 3D Applications in Complex Geometries ............... 352
          5.14.1. The Spectral Element Method: Application
                  to Incompressible Flow ...................... 352
          5.14.2. The Spectral Discontinuous Galerkin
                  Method: Application to Compressible Flow .... 353
          5.14.3. The Spectral Element Method: Application
                  to Thermoelasticity ......................... 354
          5.14.4. The Spectral Element Method: Structural
                  Dynamics Analysis of the Roman Colosseum .... 356

6.  Multidomain Solution Strategies ........................... 359
    6.1.  Introduction ........................................ 359
    6.2.  On Domain Decomposition Preconditioners ............. 359
    6.3.  (Overlapping) Schwarz Alternating Methods ........... 364
          6.3.1.  Algebraic Form of Schwarz Methods for
                  Finite-Element Discretization ............... 367
          6.3.2.  The Schwarz Method as an Algebraic
                  Preconditioner .............................. 370
          6.3.3.  Additive Schwarz Preconditioners for
                  High-Order Methods .......................... 373
          6.3.4.  FEM-SEM Spectral Equivalence ................ 380
          6.3.5.  Analysis of Schwarz Methods ................. 381
          6.3.6.  A General Theoretical Framework for the
                  Analysis of DD Iterations ................... 383
    6.4.  Schur Complement Iterative Methods .................. 385
          6.4.1.  The Steklov-Poincare Interface Problem ...... 385
          6.4.2.  Properties of the Steklov-Poincare
                  Operator .................................... 387
          6.4.3.  The Schur Complement Matrix ................. 387
          6.4.4.  DD Preconditioners for the Schur
                  Complement Matrix............................ 393
          6.4.5.  Preconditioners for the Stiffness Matrix
                  Derived from Preconditioners for the Schur
                  Complement Matrix ........................... 398
    6.5.  Solution Algorithms for Patching Collocation
          Methods ............................................. 402

7.  Incompressible Flows in Complex Domains ................... 407
    7.1.  Introduction ........................................ 407
    7.2.  High-Order Fractional-Step Methods .................. 409
    7.3.  Solution of Generalized Stokes System ............... 415
          7.3.1.  Preconditioners for the Generalized Stokes
                  Matrix fig.1 .................................... 416
          7.3.2.  Conditioning and Preconditioning for the
                  Pressure Schur Complement Matrix ............ 419
          7.3.3.  Domain Decomposition Preconditioners for
                  the Stokes and Navier-Stokes Equations ...... 421
    7.4.  Algebraic Factorization Methods ..................... 425
          7.4.1.  Chorin-Temam and Yosida Algebraic
                  Factorization Methods ....................... 425
          7.4.2.  Numerical Results for Yosida Schemes ........ 428
          7.4.3.  Preconditioners for the Approximate
                  Pressure Schur Complement ................... 430

8.  Spectral Methods Primer ................................... 435
    8.1.  The Fourier System .................................. 435
          The Fourier Series .................................. 436
          Truncation and Projection ........................... 436
          Decay of the Fourier Coefficients ................... 437
          Discrete Fourier Expansion and Interpolation ........ 438
          Aliasing ............................................ 440
          Differentiation ..................................... 441
          Gibbs Phenomenon and Filtering ...................... 443
    8.2.  General Jacobi Polynomials in the Interval (—1,1) ... 445
          The Jacobi Series. Truncation and Projection ........ 447
          Gauss-Type Quadrature Formulas and Discrete Inner
          Products ............................................ 448
          Discrete Polynomial Transform and Interpolation ..... 449
          Differentiation ..................................... 451
    8.3.  Chebyshev Polynomials ............................... 451
          Quadrature Formulas and Discrete Transforms ......... 453
          Differentiation ..................................... 454
    8.4.  Legendre Polynomials ................................ 455
          Quadrature Formulas and Discrete Norms .............. 457
          Differentiation ..................................... 457
    8.5.  Modal and Nodal Boundary-Adapted Bases on the
          Interval ............................................ 458
    8.6.  Orthogonal Systems in Unbounded Domains ............. 460
          Laguerre Polynomials and Laguerre Functions ......... 460
          Hermite Polynomials and Hermite Functions ........... 461
    8.7.  Multidimensional Expansions ......................... 462
          8.7.1.  Tensor-Product Expansions ................... 463
          8.7.2.  Expansions on Simplicial Domains ............ 465
                  Collapsed Coordinates and Warped Tensor-
                  Product Expansions .......................... 465
                  Non- Tensor-Product Expansions .............. 468
    8.8.  Mappings ............................................ 468
          8.8.1.  Finite Intervals ............................ 469
          8.8.2.  Semi-Infinite Intervals ..................... 471
          8.8.3.  The Real Line ............................... 473
          8.8.4.  Multidimensional Mappings on Finite
                  Domains ..................................... 475
    8.9.  Basic Spectral Discretization Methods ............... 478
          8.9.1.  Tau Method .................................. 479
          8.9.2.  Collocation Method .......................... 481
          8.9.3.  Galerkin Method ............................. 482
          8.9.4.  Galerkin with Numerical Integration (G-NI)
                  Method ...................................... 484
          8.9.5.  Other Boundary Conditions ................... 485

Appendix A. Basic Mathematical Concepts ....................... 489
A.l.  Hilbert and Banach Spaces ............................... 489
A.2.  The Cauchy-Schwarz Inequality ........................... 491
A.3.  The Lax-Milgram Theorem ................................. 492
A.4.  Dense Subspace of a Normed Space ........................ 492
A.5.  The Spaces fig.2 .................................. 493
A.6.  The Spaces fig.3 .............................. 493
A.7.  Infinitely Differentiable Functions and Distributions ... 494
A.8.  Sobolev Spaces and Sobolev Norms ........................ 496
A.9.  The Sobolev Inequality .................................. 501
A.10. The Poincare Inequality ................................. 501
Appendix B. Fast Fourier Transforms ........................... 503
Appendix C. Iterative Methods for Linear Systems .............. 509
C.1.  A Gentle Approach to Iterative Methods .................. 509
C.2.  Descent Methods for Symmetric Problems .................. 513
C.3.  Krylov Methods for Nonsymmetric Problems ................ 518
Appendix D. Time Discretizations .............................. 525
D.1.  Notation and Stability Definitions ...................... 525
D.2.  Standard ODE Methods .................................... 528
      D.2.1. Leap Prog Method ................................. 529
      D.2.2. Adams-Bashforth Methods .......................... 529
      D.2.3. Adams-Moulton Methods ............................ 531
      D.2.4. Backwards-Difference Formulas .................... 533
      D.2.5. Runge-Kutta Methods .............................. 534
D.3. Low-Storage Schemes ...................................... 535
Appendix E. Supplementary Material ............................ 537
E.1. Numerical Solution of the Generalized Eigenvalue
     Problem .................................................. 537
E.2. Tau Correction for the Kleiser-Schumann Method ........... 539
E.3. The Piola Transform ...................................... 541

References .................................................... 544


 
Выставка новых поступлений  |  Поступления иностранных книг в библиотеки СО РАН : 2003 | 2006 |2008
 

[О библиотеке | Академгородок | Новости | Выставки | Ресурсы | Библиография | Партнеры | ИнфоЛоция | Поиск]
  © 1997–2024 Отделение ГПНТБ СО РАН  

Документ изменен: Wed Feb 27 14:52:14 2019 Размер: 26,424 bytes.
Посещение N 1259 c 26.04.2010