Pucci P. The Maximum Principle (Basel, 2007). - ОГЛАВЛЕНИЕ / CONTENTS
Навигация

 
Выставка новых поступлений  |  Поступления иностранных книг в библиотеки СО РАН : 2003 | 2006 |2008
ОбложкаPucci P. The Maximum Principle / Pucci P., Serrin J. - Basel: Birkhauser Verlag AG, 2007. - 234 p. - (Progress in Nonlinear Differential Equations and Their Applications; N 73). - ISBN 9783764381448
 

Место хранения: 013 | Институт математики СО РАН | Новосибирск | Библиотека

Оглавление / Contents
 
Preface ........................................................ ix

1. Introduction and Preliminaries
   1.1. Introduction ............................................ 1
   1.2. Notation ............................................... 10

2. Tangency and Comparison Theorems for Elliptic Inequalities
   2.1. The contributions of Eberhard Hopf ..................... 13
   2.2. Tangency and comparison principles for quasilinear
        inequalities ........................................... 21
   2.3. Maximum and sweeping principles for quasilinear
        inequalities ........................................... 25
   2.4. Comparison theorems for divergence structure
        inequalities ........................................... 30
   2.5. Tangency theorems via Harnack's inequality ............. 34
   2.6. Uniqueness of the Dirichlet problem .................... 37
   2.7. The boundary point lemma ............................... 39
   2.8. Appendix: Proof of Eberhard Hopf's
        maximum principle ...................................... 42
Notes .......................................................... 46
Problems ....................................................... 46

3. Maximum Principles for Divergence Structure Elliptic
   Differential Inequalities
   3.1. Distribution solutions ................................. 51
   3.2. Maximum principles for homogeneous inequalities ........ 54
   3.3. A maximum principle for thin sets ...................... 59
   3.4. A comparison theorem in W1,P(Ω) ......................... 61
   3.5. Comparison theorems for singular elliptic
        inequalities ........................................... 62
   3.6. Strongly degenerate operators  68
   3.7. Maximum principles for non-homogeneous elliptic
        inequalities ........................................... 72
   3.8. Uniqueness of the singular Dirichlet problem ........... 78
   3.9. Appendix: Sobolev's inequality ......................... 79
Notes .......................................................... 81
Problems ....................................................... 81

4. Boundary Value Problems for Nonlinear Ordinary
   Differential Equations
   4.1. Preliminary lemmas ..................................... 83
   4.2. Existence theorems ..................................... 89
   4.3. Existence theorems on a half-line ...................... 92
   4.4. The end point lemma .................................... 96
   4.5. Appendix: Proof of Proposition 4.2.1 ................... 97
Problems ...................................................... 101

5. The Strong Maximum Principle and the Compact
   Support Principle
   5.1. The strong maximum principle .......................... 103
   5.2. The compact support principle ......................... 105
   5.3. A special case ........................................ 107
   5.4. Strong maximum principle: Generalized version ......... 110
   5.5. A boundary point lemma ................................ 119
   5.6. Compact support principle: Generalized version ........ 120
Notes ......................................................... 125
Problems ...................................................... 126

6. Non-homogeneous Divergence Structure Inequalities
   6.1. Maximum principles for structured inequalities ........ 127
   6.2. Proof of Theorems 6.1.1 and 6.1.2 ..................... 131
   6.3. Proof of Theorem 6.1.3 and the first part
        of Theorem 6.1.5 ...................................... 139
   6.4. Proof of Theorem 6.1.4 and the second part
        of Theorem 6.1.5 ...................................... 142
   6.5. The case p = 1 and the mean curvature equation ........ 146
Notes ......................................................... 150
Problems ...................................................... 150

7. The Harnack Inequality
   7.1. Local boundedness and the weak Harnack inequality ..... 153
   7.2. The Harnack inequality ................................ 163
   7.3. Holder continuity ..................................... 166
   7.4. The case p ≥ n ........................................ 171
   7.5. Appendix. The John-Nirenberg theorem .................. 173
Notes ......................................................... 179
Problems ...................................................... 180

8. Applications
   8.1. Cauchy-Liouville Theorems ............................. 181
   8.2. Radial symmetry ....................................... 186
   8.3. Symmetry for overdetermined boundary value
        problems .............................................. 195
   8.4. The phenomenon of dead cores .......................... 203
   8.5. The strong maximum principle for Riemannian
        manifolds ............................................. 218
Problems ...................................................... 220

Bibliography .................................................. 223

Subject Index ................................................. 233

Author Index .................................................. 235


 
Выставка новых поступлений  |  Поступления иностранных книг в библиотеки СО РАН : 2003 | 2006 |2008
 

[О библиотеке | Академгородок | Новости | Выставки | Ресурсы | Библиография | Партнеры | ИнфоЛоция | Поиск]
  © 1997–2024 Отделение ГПНТБ СО РАН  

Документ изменен: Wed Feb 27 14:52:14 2019. Размер: 8,818 bytes.
Посещение N 969 c 26.04.2010