Prevot C. A concise course on stochastic partial differential equations (Berlin, 2007). - ОГЛАВЛЕНИЕ / CONTENTS
Навигация

 
Выставка новых поступлений  |  Поступления иностранных книг в библиотеки СО РАН : 2003 | 2006 |2008
ОбложкаPrévôt C. A concise course on stochastic partial differential equations / Prévôt C., Röckner M. - Berlin: Springer, 2007. - 144 p. - (Lecture notes in mathematics; Vol. 1905). - ISBN 3540707808; ISBN 9783540707806
 

Место хранения: 013 | Институт математики СО РАН | Новосибирск | Библиотека

Оглавление / Contents
 
1. Motivation, Aims and Examples ................................ 1

2. Stochastic Integral in Hilbert Spaces ........................ 5
   2.1. Infinite-dimensional Wiener processes ................... 5
   2.2. Martingales in general Banach spaces ................... 17
   2.3. The definition of the stochastic integral .............. 21
        2.3.1. Scheme of the construction of the stochastic
               integral ........................................ 22
        2.3.2. The construction of the stochastic integral
               in detail ....................................... 22
   2.4. Properties of the stochastic integral .................. 35
   2.5. The stochastic integral for cylindrical Wiener
        processes .............................................. 39
        2.5.1. Cylindrical Wiener processes .................... 39
        2.5.2. The definition of the stochastic integral ....... 41

3. Stochastic Differential Equations in Finite Dimensions ...... 43
   3.1. Main result and a localization lemma ................... 43
   3.2. Proof of existence and uniqueness ...................... 49

4. A Class of Stochastic Differential Equations ................ 55
   4.1. Gelfand triples, conditions on the coefficients
        and examples ........................................... 55
   4.2. The main result and an Ito formula ..................... 73
   4.3. Markov property and invariant measures ................. 91

A. The Bochner Integral ....................................... 105
   A.l. Definition of the Bochner integral .................... 105
   A.2. Properties of the Bochner integral .................... 107
B. Nuclear and Hilbert-Schmidt Operators ...................... 109
C. Pseudo Inverse of Linear Operators ......................... 115
D. Some Tools from Real Martingale Theory ..................... 119
E. Weak and Strong Solutions: Yamada—Watanabe Theorem ......... 121
   E.l. The main result ....................................... 121
F. Strong, Mild and Weak Solutions ............................ 133

Bibliography .................................................. 137

Index ......................................................... 140

Symbols ....................................................... 143


 
Выставка новых поступлений  |  Поступления иностранных книг в библиотеки СО РАН : 2003 | 2006 |2008
 

[О библиотеке | Академгородок | Новости | Выставки | Ресурсы | Библиография | Партнеры | ИнфоЛоция | Поиск]
  © 1997–2024 Отделение ГПНТБ СО РАН  

Документ изменен: Wed Feb 27 14:52:12 2019. Размер: 6,019 bytes.
Посещение N 1059 c 26.04.2010