Ponge R.S. Heisenberg calculus (Providence, 2008). - ОГЛАВЛЕНИЕ / CONTENTS
Навигация

 
Выставка новых поступлений  |  Поступления иностранных книг в библиотеки СО РАН : 2003 | 2006 |2008
ОбложкаPonge R.S. Heisenberg calculus and spectral theory of hypoelliptic operators on Heisenberg manifolds. - Providence: American Mathematical Society, 2008. - 134 p. - (Memoirs of the American Mathematical Society; N 906). - ISSN 0065-9266; ISBN 9780821841488
 

Место хранения: 013 | Институт математики СО РАН | Новосибирск | Библиотека

Оглавление / Contents
 
Chapter 1. Introduction ......................................... 1
1.1. Heisenberg manifolds and their main differential
     operators .................................................. 2
1.2. Intrinsic approach to the Heisenberg calculus .............. 3
1.3. Holomorphic families of ΨHDOs .............................. 8
1.4. Heat equation and complex powers of hypoelliptic
     operators .................................................. 9
1.5. Spectral asymptotics for hypoelliptic operators ........... 13
1.6. Weyl asymptotics and CR geometry .......................... 14
1.7. Weyl asymptotics and contact geometry ..................... 15
1.8. Organization of the memoir ................................ 15

Chapter 2. Heisenberg manifolds and their main differential
     operators ................................................. 17
2.1. Heisenberg manifolds ...................................... 17
2.2. Main differential operators on Heisenberg manifolds ....... 22

Chapter 3. Intrinsic Approach to the Heisenberg Calculus ....... 29
3.1. Heisenberg calculus ....................................... 29
3.2. Principal symbol and model operators ...................... 37
3.3. Hypoellipticity and Rockland condition .................... 42
3.4. Invertibility criteria for sublaplacians .................. 52
3.5. Invertibility criteria for the main differential
     operators ................................................. 56

Chapter 4. Holomorphic families of ΨHDOs ....................... 65
4.1. Almost homogeneous approach to the Heisenberg calculus .... 65
4.2. Holomorphic families of ΨHDOs ............................. 67
4.3. Composition of holomorphic families of ΨHDOs .............. 69
4.4. Kernel characterization of holomorphic families of ΨDOs ... 73
4.5. Holomorphic families of ΨDOs on a general Heisenberg
     manifold .................................................. 76
4.6. Transposes and adjoints of holomorphic families of
     ΨHDOs ..................................................... 78

Chapter 5. Heat Equation and Complex Powers of Hypoelliptic
     Operators ................................................. 81
5.1. Pseudodifferential representation of the heat kernel ...... 81
5.2. Heat equation and sublaplacians ........................... 87
5.3. Complex powers of hypoelliptic differential operators ..... 93
5.4. Rockland condition and the heat equation .................. 97
5.5. Weighted Sobolev Spaces .................................. 102

Chapter 6. Spectral Asymptotics for Hypoelliptic Operators .... 107
6.1. Spectral asymptotics for hypoelliptic operators .......... 107
6.2. Weyl asymptotics and CR geometry ......................... 111
6.3. Weyl asymptotics and contact geometry .................... 119

Appendix A. Proof of Proposition 3.1.18 ....................... 123

Appendix B. Proof of Proposition 3.1.21 ....................... 127

Appendix. Bibliography ........................................ 131
  References .................................................. 131


 
Выставка новых поступлений  |  Поступления иностранных книг в библиотеки СО РАН : 2003 | 2006 |2008
 

[О библиотеке | Академгородок | Новости | Выставки | Ресурсы | Библиография | Партнеры | ИнфоЛоция | Поиск]
  © 1997–2024 Отделение ГПНТБ СО РАН  

Документ изменен: Wed Feb 27 14:52:12 2019. Размер: 6,934 bytes.
Посещение N 957 c 26.04.2010