Orlik P. Algebraic combinatorics (Berlin, 2007). - ОГЛАВЛЕНИЕ / CONTENTS
Навигация

 
Выставка новых поступлений  |  Поступления иностранных книг в библиотеки СО РАН : 2003 | 2006 |2008
ОбложкаOrlik P. Algebraic combinatorics: lectures at a summer school, Nordfjordeid, Norway, June, 2003 / Orlik P., Welker V. - Berlin; London: Springer, 2007. - 177 p. - ISBN 3540683755; ISBN 9783540683759
 

Место хранения: 013 | Институт математики СО РАН | Новосибирск | Библиотека

Оглавление / Contents
 
PART I. LECTURES ON ARRANGEMENTS

Introduction .................................................... 5

1. Algebraic Combinatorics ..................................... 13
   1.1. Chamber Counting ....................................... 13
   1.2. Ranking Patterns ....................................... 17
   1.3. Random Walks ........................................... 19
   1.4. The Orlik-Solomon Algebra .............................. 23
   1.5. The NBC Complex ........................................ 27
   1.6. The Aomoto Complex ..................................... 33
   1.7. Combinatorial Types .................................... 40
   1.8. Formal Connections ..................................... 41
   1.9. Multiplicities ......................................... 43
   1.10.Ideal Invariance ....................................... 47
   1.11.Examples ............................................... 52
   1.12.Exercises .............................................. 58

2. Applications ................................................ 61
   2.1. Topology ............................................... 61
   2.2. Local System Cohomology ................................ 64
   2.3. Resonance .............................................. 67
   2.4. Moduli Spaces .......................................... 68
   2.5. Gauss-Manin Connections ................................ 70
   2.6. Exercises .............................................. 76

References ..................................................... 77

PART II.DISCRETE MORSE THEORY AND FREE RESOLUTIONS

1. Introduction ................................................ 83
   1.1. Overview ............................................... 83
   1.2. Enumerative and Algebraic Invariants of Simplicial
        Complexes .............................................. 85
   1.3. Cohen-Macaulay Simplicial Complexes .................... 92
   1.4. Some Open Problems in the Field ........................ 97

2. Basic Definitions and Examples ............................. 107
   2.1. Multigraded Free Resolutions .......................... 107
   2.2. Basics of CW-Complexes ................................ 113
   2.3. Basics of Cellular Homology ........................... 117
   2.4. Cellular Chain Complexes and Cellular Resolutions ..... 120
   2.5. Co-Artinian Monomial Modules. 123

3. Cellular Resolution ........................................ 125
   3.1. When Does a CW-Complex Support a Cellular
        Resolution ? .......................................... 125
   3.2. Reading off The Betti Numbers ......................... 128
   3.3. Examples of Cellular Resolutions ...................... 131

4. Discrete Morse Theory ...................................... 145
   4.1. Forman's Discrete Morse Theory ........................ 146
   4.2. Discrete Morse Theory for Graded CW-Complexes ......... 148
   4.3. Minimizing Cellular Resolutions using Discrete
        Morse Theory .......................................... 158
   4.4. The Morse Differential ................................ 159

References .................................................... 169

Index ......................................................... 173


 
Выставка новых поступлений  |  Поступления иностранных книг в библиотеки СО РАН : 2003 | 2006 |2008
 

[О библиотеке | Академгородок | Новости | Выставки | Ресурсы | Библиография | Партнеры | ИнфоЛоция | Поиск]
  © 1997–2024 Отделение ГПНТБ СО РАН  

Документ изменен: Wed Feb 27 14:52:12 2019. Размер: 6,904 bytes.
Посещение N 979 c 26.04.2010