Maz'ya V.G. Theory of Sobolev multipliers: with applications to differential and integral operators (Вerlin, 2009) - ОГЛАВЛЕНИЕ / CONTENTS
Навигация

 
Выставка новых поступлений  |  Поступления иностранных книг в библиотеки СО РАН : 2003 | 2006 |2008
ОбложкаMaz'ya V.G. Theory of Sobolev multipliers: with applications to differential and integral operators / Maz'ya V.G., Shaposhnikova T.O. - Berlin: Springer, 2009. - 609 p. - (Grundlehren der mathematischen Wissenschaften; 337). - ISBN 978-3-540-69490-8
 

Место хранения: 013 | Институт математики СО РАН | Новосибирск | Библиотека

Оглавление / Contents
 
Introduction .................................................... 1

Part I.   Description and Properties of Multipliers

1.  Trace Inequalities for Functions in Sobolev Spaces .......... 7
    1.1.  Trace Inequalities for Functions in w1m and W1m ........ 7
          1.1.1.  The Case m = 1 ................................ 7
          1.1.2.  The Case m ≥ 1 ............................... 12
    1.2.  Trace Inequalities for Functions in wpm and Wpm,
          p > 1 ................................................ 14
          1.2.1.  Preliminaries ................................ 14
          1.2.2.  The (p,m)-Capacity ........................... 16
          1.2.3.  Estimate for the Integral of Capacity of
                  a Set Bounded by a Level Surface ............. 19
          1.2.4.  Estimates for Constants in Trace
                  Inequalities ................................. 22
          1.2.5.  Other Criteria for the Trace Inequality
                  (1.2.29) with p > 1 .......................... 25
          1.2.6.  The Fefferman and Phong Sufficient
                  Condition .................................... 28
    1.3.  Estimate for the Lq-Norm with respect to an
          Arbitrary Measure .................................... 29
          1.3.1.  The case l ≤ p < q ........................... 30
          1.3.2.  The case q < p ≤ n/m ......................... 30

2.  Multipliers in Pairs of Sobolev Spaces ..................... 33
    2.1.  Introduction ......................................... 33
    2.2.  Characterization of the Space M(W1m → W1l) ............ 35
    2.3.  Characterization of the Space M(Wpm - Wpl)
          for p > 1 ............................................ 38
          2.3.1.  Another Characterization of the Space
                  M(Wpm - Wpl) for 0 < l < m, pm < n, p < 1 ..... 43
          2.3.2.  Characterization of the Space M(Wpm - Wpl)
                  for pm > n, p > 1 ............................ 47
          2.3.3.  One-Sided Estimates for Norms of
                  Multipliers in the Case pm ≤ n ............... 48
          2.3.4.  Examples of Multipliers ...................... 49
    2.4.  The Space M(Wpm(R+n) → Wpl(R+n)) ....................... 50
          2.4.1.  Extension from a Half-Space .................. 50
          2.4.2.  The Case p > 1 ............................... 51
          2.4.3.  The Case p = 1 ............................... 53
    2.5.  The Space M(Wpm → Wpk) ................................ 54
    2.6.  The Space M(Wpm → Wql) ................................ 57
    2.7.  Certain Properties of Multipliers .................... 58
    2.8.  The Space M(wpm → wpl) ................................ 60
    2.9.  Multipliers in Spaces of Functions with
          Bounded Variation .................................... 63
          2.9.1.  The Spaces M bv and M BV ..................... 66

3.  Multipliers in Pairs of Potential Spaces ................... 69
    3.1.  Trace Inequality for Bessel and Riesz Potential
          Spaces ............................................... 69
          3.1.1.  Properties of Bessel Potential Spaces ........ 70
          3.1.2.  Properties of the (p,m)-Capacity ............. 71
          3.1.3.  Main Result .................................. 73
    3.2.  Description of M(Hpm → Hpl) ........................... 75
          3.2.1.  Auxiliary Assertions ......................... 75
          3.2.2.  Imbedding of M(Hpm → Hpl) into
                  M(Hpm-l → Lp) ................................. 76
          3.2.3.  Estimates for Derivatives of a Multiplier .... 78
          3.2.4.  Multiplicative Inequality for the
                  Strichartz Function .......................... 79
          3.2.5.  Auxiliary Properties of the Bessel Kernel
                  Gl ........................................... 80
          3.2.6.  Upper Bound for the Norm of a Multiplier ..... 81
          3.2.7.  Lower Bound for the Norm of a Multiplier ..... 85
          3.2.8.  Description of the Space M(Hpm → Hpl) ......... 86
          3.2.9.  Equivalent Norm in M(Hpm → Hpl) Involving
                  the Norm in Lmp/(m-l) .......................... 87
          3.2.10. Characterization of M(Hpn → Hpl), m > l,
                  Involving the Norm in L1,unif ................. 89
          3.2.11. The Space M(Hpm → Hpl) for mp > n ............ 95
    3.3.  One-Sided Estimates for the Norm in M(Hpm → Hpl) ...... 95
          3.3.1.  Lower Estimate for the Norm in M(Hpm → Hpl)
                  Involving Morrey Type Norms .................. 96
          3.3.2.  Upper Estimate for the Norm in
                  M(Hpm → Hpl) Involving Marcinkiewicz
                  Type Norms ................................... 96
          3.3.3.  Upper Estimates for the Norm in
                  M(Hpm → Hpl) Involving Norms in Hn/ml .......... 98
    3.4.  Upper Estimates for the Norm in M(Hpm → Hpl) by
          Norms in Besov Spaces ................................ 99
          3.4.1.  Auxiliary Assertions ......................... 99
          3.4.2.  Properties of the Space Bq,∞η ................ 103
          3.4.3.  Estimates for the Norm in M(Hpm → Hpl) by
                  the Norm in Bq,∞η  ........................... 108
          3.4.4.  Estimate for the Norm of a Multiplier in
                  МНрl(R1) by the q-Variation .................. 110
    3.5.  Miscellaneous Properties of Multipliers in
          M(Hpm → Hpl) ......................................... 111
    3.6.  Spectrum of Multipliers in Hpl and Hp'-l ............. 115
          3.6.1.  Preliminary Information ..................... 115
          3.6.2.  Facts from Nonlinear Potential Theory ....... 117
          3.6.3.  Main Theorem ................................ 118
          3.6.4.  Proof of Theorem 3.6.1. ..................... 120
    3.7.  The Space M(hpm → hpl) ............................... 122
    3.8.  Positive Homogeneous Multipliers .................... 125
          3.8.1.  The Space M(Hpm(fig.1) - Hpl(fig.1)) ............. 125
          3.8.2.  Other Normalizations of the Spaces hpm
                  and Hpm ...................................... 127
          3.8.3.  Positive Homogeneous Elements of the
                  Spaces M(hpm → hpl) and M(Hpm → Hpl) .......... 130

4.  The Space M(Bpm → Bpl) with p > 1 .......................... 133
    4.1.  Introduction ........................................ 133
    4.2.  Properties of Besov Spaces .......................... 134
          4.2.1.  Survey of Known Results ..................... 134
          4.2.2.  Properties of the Operators fig.2 and Dp,l .... 136
          4.2.3.  Pointwise Estimate for Bessel Potentials .... 138
    4.3.  Proof of Theorem 4.1.1. ............................. 141
          4.3.1.  Estimate for the Product of First
                  Differences ................................. 141
          4.3.2.  Trace Inequality for Bpk, p → 1 ............. 143
          4.3.3.  Auxiliary Assertions Concerning
                  M(Bpm → Bpl) ................................. 145
          4.3.4.  Lower Estimates for the Norm in
                  M(Bpm → Bpl) ................................. 146
          4.3.5.  Proof of Necessity in Theorem 4.1.1. ........ 149
          4.3.6.  Proof of Sufficiency in Theorem 4.1.1. ...... 155
          4.3.7.  The Case mp > n ............................. 164
          4.3.8.  Lower and Upper Estimates for the Norm
                  in M(Bpm → Bpl) .............................. 165
    4.4.  Sufficient Conditions for Inclusion into
          M(Wpm → Wpl) with Noninteger m and l ................. 166
          4.4.1.  Conditions Involving the Space Вq,∞μ ......... 166
          4.4.2.  Conditions Involving the Fourier
                  Transform ................................... 168
          4.4.3.  Conditions Involving the Space Bqpl .......... 170
    4.5.  Conditions Involving the Space Hn/ml ................. 173
    4.6.  Composition Operator on M(Wpm → Wpl) ................. 174

5.  The Space M(B1m → B1l) ..................................... 179
    5.1.  Trace Inequality for Functions in B1l(Rn) ............ 179
          5.1.1.  Auxiliary Facts ............................. 180
          5.1.2.  Main Result ................................. 183
    5.2.  Properties of Functions in the Space B1k(Rn) ......... 185
          5.2.1.  Trace and Imbedding Properties .............. 185
          5.2.2.  Auxiliary Estimates for the Poisson
                  Operator .................................... 189
    5.3.  Descriptions of M(B1m → B1l) with Integer l .......... 193
          5.3.1.  A Norm in M(B1m → B1l) ....................... 194
          5.3.2.  Description of M(B1m → B1l) Involving fig.3 ... 199
          5.3.3.  M(B1m(Rn) → B1l(Rn)) as the Space
                  of Traces ................................... 201
          5.3.4.  Interpolation Inequality for Multipliers .... 202
    5.4.  Description of the Space M(B1m - B1l) with
          Noninteger l ........................................ 203
    5.5.  Further Results on Multipliers in Besov and
          Other Function Spaces ............................... 206
          5.5.1.  Peetre's Imbedding Theorem .................. 206
          5.5.2.  Related Results on Multipliers in Besov
                  and Triebel-Lizorkin Spaces ................. 208
          5.5.3.  Multipliers in BMO .......................... 210

6.  Maximal Algebras in Spaces of Multipliers ................. 213
    6.1.  Introduction ........................................ 213
    6.2.  Pointwise Interpolation Inequalities for
          Derivatives ......................................... 214
          6.2.1.  Inequalities Involving Derivatives of
                  Integer Order ............................... 214
          6.2.2.  Inequalities Involving Derivatives of
                  Fractional Order ............................ 215
    6.3.  Maximal Banach Algebra in M(Wpm - Wpl) ............... 220
          6.3.1.  The Case p > 1 .............................. 220
          6.3.2.  Maximal Banach Algebra in M(W1m - W1l) ....... 224
    6.4.  Maximal Algebra in Spaces of Bessel Potentials ...... 227
          6.4.1.  Pointwise Inequalities Involving the
                  Strichartz Function ......................... 227
          6.4.2.  Banach Algebra Apm,l ......................... 231
    6.5.  Imbeddings of Maximal Algebras ...................... 233

7.  Essential Norm and Compactness of Multipliers ............. 241
    7.1.  Auxiliary Assertions ................................ 243
    7.2.  Two-Sided Estimates for the Essential Norm. The
          Case m > l .......................................... 248
          7.2.1.  Estimates Involving Cutoff Functions ........ 248
          7.2.2.  Estimate Involving Capacity (The Case 
                  mp < n, p > l) .............................. 250
          7.2.3.  Estimates Involving Capacity (The Case
                  mp = n, p > 1) .............................. 257
          7.2.4.  Proof of Theorem 7.0.3. ..................... 261
          7.2.5.  Sharpening of the Lower Bound for the
                  Essential Norm in the Case m > l,
                  mp < n, p > l ............................... 262
          7.2.6.  Estimates of the Essential Norm for
                  mр > n, p > 1 and for p = 1 ................. 263
          7.2.7.  One-Sided Estimates for the Essential
                  Norm ........................................ 266
          7.2.8.  The Space of Compact Multipliers ............ 267
    7.3.  Two-Sided Estimates for the Essential Norm in
          the Case m = l ...................................... 270
          7.3.1.  Estimate for the Maximum Modulus of a
                  Multiplier in Wpl by its Essential Norm ..... 270
          7.3.2.  Estimates for the Essential Norm Involving
                  Cutoff Functions (The Case lp ≤ n, p > 1) ... 272
          7.3.3.  Estimates for the Essential Norm Involving
                  Capacity (The Case lp < n, p > 1) ........... 277
          7.3.4.  Two-Sided Estimates for the Essential Norm
                  in the Cases lp > n, p > 1, and p = 1 ....... 278
          7.3.5.  Essential Norm in MWpl ...................... 281

8.  Traces and Extensions of Multipliers ...................... 285
    8.1.  Introduction ........................................ 285
    8.2.  Multipliers in Pairs of Weighted Sobolev Spaces
          in R+n .............................................. 285
    8.3.  Characterization of M(Wpt,β → Wps,α) ................. 288
    8.4.  Auxiliary Estimates for an Extension Operator ....... 292
          8.4.1.  Pointwise Estimates for Tγ and ÑTγ .......... 292
          8.4.2.  Weighted Lp-Estimates for Tγ and ÑTγ ........ 294
    8.5.  Trace Theorem for the Space M(Wpt,β → Wps,α) .......... 297
          8.5.1.  The Case l < 1 .............................. 298
          8.5.2.  The Case l > 1 .............................. 301
          8.5.3.  Proof of Theorem 8.5.1 for l > 1 ............ 303
    8.6.  Traces of Multipliers on the Smooth Boundary
          of a Domain ......................................... 304
    8.7.  MWpl(Rn) as the Space of Traces of Multipliers in
          the Weighted Sobolev Space Wb,βk(Rn+m) ............... 305
          8.7.1.  Preliminaries ............................... 305
          8.7.2.  A Property of Extension Operator ............ 306
          8.7.3.  Trace and Extension Theorem for
                  Multipliers ................................. 308
          8.7.4.  Extension of Multipliers from Rn to R+n+1 .... 311
          8.7.5.  Application to the First Boundary Value
                  Problem in a Half-Space ..................... 311
    8.8.  Traces of Functions in MWpl(Rn+m) on Rn .............. 312
          8.8.1.  Auxiliary Assertions ........................ 313
          8.8.2.  Trace and Extension Theorem ................. 315
    8.9.  Multipliers in the Space of Bessel Potentials as
          Traces of Multipliers ............................... 319
          8.9.1.  Bessel Potentials as Traces ................. 319
          8.9.2.  An Auxiliary Estimate for the Extension
                  Operator T .................................. 320
          8.9.3.  MHlp as a Space of Traces .................... 322

9.  Sobolev Multipliers in a Domain, Multiplier Mappings
    and Manifolds ............................................. 325
    9.1.  Multipliers in a Special Lipschitz Domain ........... 326
          9.1.1.  Special Lipschitz Domains ................... 326
          9.1.2.  Auxiliary Assertions ........................ 326
          9.1.3.  Description of the Space of Multipliers ..... 329
    9.2.  Extension of Multipliers to the Complement of a
          Special Lipschitz Domain ............................ 332
    9.3.  Multipliers in a Bounded Domain ..................... 336
          9.3.1.  Domains with Boundary in the Class C0,1 ...... 336
          9.3.2.  Auxiliary Assertions ........................ 337
          9.3.3.  Description of Spaces of Multipliers in a
                  Bounded Domain with Boundary in the
                  Class C0,1 .................................. 339
          9.3.4.  Essential Norm and Compact Multipliers in
                  a Bounded Lipschitz Domain .................. 340
          9.3.5.  The Space MLp1(Ω) for an Arbitrary
                  Bounded Domain .............................. 346
    9.4.  Change of Variables in Norms of Sobolev Spaces ...... 350
          9.4.1.  (p,l)-Diffeomorphisms ....................... 350
          9.4.2.  More on (p,l)-Diffeomorphisms ............... 352
          9.4.3.  A Particular (p,l)-Diffeomorphism ........... 353
          9.4.4.  (p,l)-Manifolds ............................. 356
          9.4.5.  Mappings Tpm,l of One Sobolev Space into
                  Another ..................................... 357
    9.5.  Implicit Function Theorems .......................... 364
    9.6.  The Space fig.4 ............................ 367
          9.6.1.  Auxiliary Results ........................... 367
          9.6.2.  Description of the Space fig.4 ..... 369

Part II.  Applications of Multipliers to Differential and
          Integral Operators

10. Differential Operators in Pairs of Sobolev Spaces ......... 373
    10.1.  The Norm of a Differential Operator: Wph → Wph-k .... 373
           10.1.1.  Coefficients of Operators Mapping Wph
                    into Wph-k as Multipliers .................. 374
           10.1.2.  A Counterexample .......................... 378
           10.1.3.  Operators with Coefficients Independent
                    of Some Variables ......................... 379
           10.1.4.  Differential Operators on a Domain ........ 382
    10.2.  Essential Norm of a Differential Operator .......... 384
    10.3.  Predholm Property of the Schrцdinger Operator ...... 386
    10.4.  Domination of Differential Operators in Rn ......... 387

11.  Schrödinger Operator and M(w21 → w2-1) .................... 391
    11.1.  Introduction ....................................... 391
    11.2.  Characterization of M(w21 → w2-1) and the
           Schrödinger Operator оn w21 ........................ 393
    11.3.  A Compactness Criterion ............................ 407
    11.4.  Characterization of M(W21 → W2-1) ................... 411
    11.5.  Characterization of the Space M(fig.5 ...... 416
    11.6.  Second-Order Differential Operators Acting from
           w21 to w2-1 ......................................... 421

12. Relativistic Schrödinger Operator and
     M(W21/2 → W2-1/2) .......................................... 427
    12.1. Auxiliary Assertions ................................ 427
          12.1.1. Main Result ................................. 436
    12.2. Corollaries of the Form Boundedness Criterion and
          Related Results ..................................... 441

13. Multipliers as Solutions to Elliptic Equations ............ 445
    13.1. The Dirichlet Problem for the Linear Second-Order
          Elliptic Equation in the Space of Multipliers ....... 445
    13.2. Bounded Solutions of Linear Elliptic Equations
          as Multipliers ...................................... 447
          13.2.1. Introduction ................................ 447
          13.2.2. The Case β > 1 .............................. 448
          13.2.3.  The Case β = 1 ............................. 452
          13.2.4. Solutions as Multipliers from
                   fig.6 into W12,1(Ω) ...................... 454
    13.3. Solvability of Quasilinear Elliptic Equations in
          Spaces of Multipliers ............................... 456
           13.3.1. Scalar Equations in Divergence Form ........ 457
           13.3.2. Systems in Divergence Form ................. 458
           13.3.3. Dirichlet Problem for Quasilinear
                   Equations in Divergence Form ............... 461
           13.3.4. Dirichlet Problem for Quasilinear
                   Equations in Nondivergence Form ............ 463
    13.4. Coercive Estimates for Solutions of Elliptic
           equations in Spaces of Multipliers ................. 467
           13.4.1. The Case of Operators in Rn ................ 467
           13.4.2. Boundary Value Problem in a Half-Space ..... 469
           13.4.3. On the Loo-Norm in the Coercive Estimate ... 473
    13.5.  Smoothness of Solutions to Higher Order Elliptic
           Semilinear Systems ................................. 474
           13.5.1. Composition Operator in Classes of
                   Multipliers ................................ 474
           13.5.2. Improvement of Smoothness of Solutions
                   to Elliptic Semilinear Systems ............. 477

14. Regularity of the Boundary in Lp-Theory of Elliptic
    Boundary Value Problems ................................... 479
    14.1. Description of Results .............................. 479
    14.2. Change of Variables in Differential Operators ....... 481
    14.3. Fredholm Property of the Elliptic Boundary Value
          Problem ............................................. 483
          14.3.1. Boundaries in the Classes Mpl-1/p,
                  Wpl-1/p, and Mpl-1/p(δ) ....................... 483
           14.3.2. A Priori Lp-Estimate for Solutions and
                   Other Properties of the Elliptic Boundary
                   Value Problem .............................. 484
    14.4. Auxiliary Assertions ................................ 489
          14.4.1. Some Properties of the Operator Τ ........... 489
          14.4.2. Properties of the Mappings λ and χ .......... 490
          14.4.3. Invariance of the Space fig.7 Under a
                  Change of Variables ......................... 492
          14.4.4. The Space Wp-k for a Special Lipschitz
                  Domain ...................................... 496
          14.4.5. Auxiliary Assertions on Differential
                  Operators in Divergence Form ................ 498
    14.5. Solvability of the Dirichlet Problem in Wpl(ω) ...... 502
          14.5.1. Generalized Formulation of the Dirichlet
                  Problem ..................................... 502
          14.5.2. A Priori Estimate for Solutions of the
                  Generalized Dirichlet Problem ............... 502
          14.5.3. Solvability of the Generalized Dirichlet
                  Problem ..................................... 503
          14.5.4. The Dirichlet Problem Formulated in Terms
                  of Traces ................................... 504
    14.6. Necessity of Assumptions on the Domain .............. 507
          14.6.1. A Domain Whose Boundary is in M23/2 Ç C1
                  but does not Belong to M23/2(δ) .............. 507
          14.6.2. Necessary Conditions for Solvability of
                  the Dirichlet Problem ....................... 509
          14.6.3. Boundaries of the Class Mpl-1/p(δ) ........... 510
    14.7. Local Characterization of Mpl-1/p(δ) ................. 513
          14.7.1. Estimates for a Cutoff Function ............. 513
          14.7.2. Description of Mpl-1/p(δ) Involving a
                  Cutoff Function ............................. 515
          14.7.3. Estimate for s1 ............................. 516
          14.7.4. Estimate for s2 ............................. 520
          14.7.5. Estimate for s3 ............................. 523

15. Multipliers in the Classical Layer Potential Theory
    for Lipschitz Domains ..................................... 531
    15.1. Introduction ........................................ 531
    15.2. Solvability of Boundary Value Problems in Weighted
          Sobolev Spaces ...................................... 537
          15.2.1. (p,k,α)-Diffeomorphisms ..................... 537
          15.2.2. Weak Solvability of the Dirichlet Problem ... 539
          15.2.3. Main Result ................................. 542
    15.3. Continuity Properties of Boundary Integral
          Operators ........................................... 547
    15.4. Proof of Theorems 15.1.1 and 15.1.2 ................. 551
          15.4.1. Proof of Theorem 15.1.1 ..................... 551
          15.4.2. Proof of Theorem 15.1.2 ..................... 557
    15.5. Properties of Surfaces in the Class Mpl(δ) .......... 559
    15.6. Sharpness of Conditions Imposed on ∂Ω ............... 562
          15.6.1. Necessity of the Inclusion ∂Ω Î Wpl in
                  Theorem 15.2.1 .............................. 562
          15.6.2. Sharpness of the Condition ∂Ω Î B∞,pl ........ 563
          15.6.3. Sharpness of the Condition ∂Ω Î Mpl(δ)
                  in Theorem 15.2.1 ........................... 564
          15.6.4. Sharpness of the Condition ∂Ω Î Mpl(δ)
                  in Theorem 15.1.1 ........................... 566
    15.7. Extension to Boundary Integral Equations of
          Elasticity .......................................... 568

16. Applications of Multipliers to the Theory of Integral
    Operators ................................................. 573
    16.1. Convolution Operator in Weighted L2-Spaces .......... 573
    16.2. Calculus of Singular Integral Operators with
          Symbols in Spaces of Multipliers .................... 575
    16.3. Continuity in Sobolev Spaces of Singular Integral
          Operators with Symbols Depending on x ............... 579
          16.3.1. Function Spaces ............................. 580
          16.3.2. Description of the Space M(Hm,μ → Hl,μ) ..... 582
          16.3.3. Main Result ................................. 585
          16.3.4. Corollaries ................................. 588

References .................................................... 591
List of Symbols ............................................... 605
Author and Subject Index ...................................... 607


 
Выставка новых поступлений  |  Поступления иностранных книг в библиотеки СО РАН : 2003 | 2006 |2008
 

[О библиотеке | Академгородок | Новости | Выставки | Ресурсы | Библиография | Партнеры | ИнфоЛоция | Поиск]
  © 1997–2024 Отделение ГПНТБ СО РАН  

Документ изменен: Wed Feb 27 14:52:12 2019. Размер: 34,045 bytes.
Посещение N 1127 c 26.04.2010