Akiyoshi H. Punctured torus groups and 2-bridge knot groups (Berlin, 2007). - ОГЛАВЛЕНИЕ / CONTENTS
Навигация

 
Выставка новых поступлений  |  Поступления иностранных книг в библиотеки СО РАН : 2003 | 2006 |2008
ОбложкаAkiyoshi H. Punctured torus groups and 2-bridge knot groups / Akiyoshi H. et al. - Berlin: Springer, 2007. - 252 p. - (Lecture notes in mathematics; Vol. 1909). - ISSN 0075-8434; ISBN 3540718060
 

Место хранения: 013 | Институт математики СО РАН | Новосибирск | Библиотека

Оглавление / Contents
 
1. Jorgensen's picture of quasifuchsian punctured torus
   groups ....................................................... 1
   1.1. Punctured torus groups, Ford domains and
        EPH-decompositions ...................................... 2
   1.2. Jorgensen's theorem for quasifuchsian punctured torus
        groups (I) .............................................. 7
   1.3. Jorgensen's theorem for quasifuchsian punctured torus
        groups (II) ............................................ 12
   1.4. The topological ideal polyhedral complex Trg(ν) dual
        to Spine(ν) ............................................ 13

2. Fricke surfaces and PSL(2,C)-representations ................ 15
   2.1. Fricke surfaces and their fundamental groups ........... 16
   2.2. Type-preserving representations ........................ 21
   2.3. Markoff maps and type-preserving representations ....... 26
   2.4. Markoff maps and complex probability maps .............. 29
   2.5. Miscellaneous properties of discrete groups ............ 33

3. Labeled representations and associated complexes ............ 37
   3.1. The complex fig.1(ρ,σ) and upward Markoff maps ............ 38
   3.2. The complexes fig.1(ρ,Σ) and fig.1(Σ) ......................... 41
   3.3. Labeled representation ρ = (ρ,ν) and the complexes
        fig.1(ρ) and fig.1(ν) ......................................... 44
   3.4. Virtual Ford domain .................................... 44

4. Chain rule and side parameter ............................... 49
   4.1. Chain rule for isometric circles ....................... 50
   4.2. Side parameter ......................................... 56
   4.3. -terminal triangles .................................. 66
   4.4. Basic properties of -terminal triangles .............. 70
   4.5. Relation between side parameters at adjacent
        triangles .............................................. 78
   4.6. Transition of terminal triangles ....................... 82
   4.7. Proof of Lemma 4.5.5. .................................. 89
   4.8. Representations which are weakly simple at σ ........... 95

5. Special examples ........................................... 101
   5.1. Real representations .................................. 102
   5.2. Isosceles representations and thin labels ............. 106
   5.3. Groups generated by two parabolic transformations ..... 117
   5.4. Imaginary representations ............................. 126
   5.5. Representations with accidental parabolic/elliptic
        transformations ....................................... 127

6. Reformulation of Main Theorem 1.3.5 and outline
   of the proof ............................................... 133
   6.1. Reformulation of Main Theorem 1.3.5. .................. 134
   6.2. Route map of the proof of Modified Main
        Theorem 6.1.11 ........................................ 136
   6.3. The cellular structure of ∂Eh(ρ) ...................... 138
   6.4. Applying Poincare's theorem on fundamental
        polyhedra ............................................. 142
   6.5. Proof of Theorem 6.1.8 (Good implies quasifuchsian) ... 144
   6.6. Structure of the complex ΔE and the proof of
        Theorem 6.1.12. ....................................... 147
   6.7. Characterization of Σ(ν) for good labeled
        representations ....................................... 151

7. Openness ................................................... 155
   7.1. Hidden isometric hemispheres .......................... 155
   7.2. Proof of Proposition 6.2.1 (Openness) -
        Thick Case - .......................................... 159
   7.3. Proof of Proposition 6.2.1 (Openness) - Thin Case - ... 165

8. Closedness ................................................. 171
   8.1. Proof of Proposition 6.2.3 (SameStratum) .............. 172
   8.2. Proof of Proposition 6.2.7 (Convergence) .............. 178
   8.3. Route map of the proof of Proposition 6.2.4
        (Closedness) .......................................... 180
   8.4. Reduction of Proposition 8.3.5 - The condition
        HausdorffConvergence - ................................ 182
   8.5. Classification of simplices of fig.1(ν) ................... 184
   8.6. Proof of Proposition 8.4.4 (F(ξ) ⊂ ∂Eh(ρ,L0)) ....... 185
   8.7. Accidental parabolic transformation ................... 187
   8.8. Proof of Proposition 8.4.5 - length 1 case - .......... 189
   8.9. Proof of Proposition 8.4.5 - length ≥ 2 case -
        (Step 1) .............................................. 191
   8.10.Proof of Proposition 8.4.5 - length ≥ 2 case -
        (Step 2) .............................................. 203
   8.11.Proof of Proposition 8.4.5 - length ≥ 2 case -
        (Step 3) .............................................. 206
   8.12.Proof of Proposition 8.3.6 ............................ 209

9. Algebraic roots and geometric roots......................... 215
   9.1. Algebraic roots ....................................... 215
   9.2. Unique existence of the geometric root ................ 227
   9.3. Continuity of roots and continuity of intersections ... 229

A. Appendix ................................................... 233
   A.l. Basic facts concerning the Ford domain ................ 233

References .................................................... 239

Notation ...................................................... 245

Index ......................................................... 249


 
Выставка новых поступлений  |  Поступления иностранных книг в библиотеки СО РАН : 2003 | 2006 |2008
 

[О библиотеке | Академгородок | Новости | Выставки | Ресурсы | Библиография | Партнеры | ИнфоЛоция | Поиск]
  © 1997–2024 Отделение ГПНТБ СО РАН  

Документ изменен: Wed Feb 27 14:52:12 2019. Размер: 9,925 bytes.
Посещение N 1377 c 26.04.2010