Mozzoni D. The changing geomagnetic field (Potsdam, 2008). - ОГЛАВЛЕНИЕ / CONTENTS
Навигация

 
Выставка новых поступлений  |  Поступления иностранных книг в библиотеки СО РАН : 2003 | 2006 |2008
ОбложкаMozzoni D. The changing geomagnetic field from the ionosphere to the core-mantle boundary. - Potsdam: Geoforschungszentrum Potsdam, 2008. - 156 p. - (Scientific Technical Reports; STR 08-02). - ISSN 1610-0956
 

Место хранения: 01 | ГПНТБ СО РАН | Новосибирск

Оглавление / Contents
 
List of Tables ................................................ vii

List of Figures ................................................ ix

Abstract ..................................................... xiii

1.   Introduction к Background .................................. 1
1.1  Introduction ............................................... 1
1.2  Background ................................................. 3
1.3  Historical Context ......................................... 4
1.4  Observing the Geomagnetic Field ............................ 6
1.5  Sources of the Geomagnetic Field .......................... 16
1.6  Mathematical Description of the Geomagnetic Field ......... 30
1.7  Geomagnetic Field Models .................................. 36

2.   External Perturbations: As seen by the CHAMP satellite &
     the TIE-GCM ............................................... 41
2.1  Introduction .............................................. 41
2.2  Dates Selected for Investigation .......................... 43
2.3  TIE-GCM Method ............................................ 47
2.4  A Quick Solar Quiet Verification .......................... 49
2.5  Calculation of Magnetic Perturbations ..................... 51
2.6  F10.7 Variation ............................................ 52
2.7  Kp Variation .............................................. 59
2.8  The TIE-GCM as a possibility for correcting magnetic
     field data ................................................ 64
2.9  Conclusions ............................................... 75

3.   Internal Variations: South Atlantic Anomaly from
     the Earth's Surface to the Core-Mantle Boundary ........... 76
3.1  The South Atlantic Anomaly ................................ 76
3.2  Magnetic Observatories near the South Atlantic Anomaly .... 79
3.3  Field Models Utilized in this Study ....................... 80
3.4  Tracking the Center of the South Atlantic Anomaly ......... 81
3.5  Axial Dipole Moment - A Role in the SAA? .................. 87
3.6  Magnetic Radial Flux at the Core-Mantle Boundary .......... 96
3.7  Association of Total Unsigned Flux with Geomagnetic
     Jerks .................................................... 104

4.   Conclusions & Perspectives ............................... 113
4.1  ... for the External Field Perturbations ................. 113
4.2  ... for the Internal Field Variations .................... 114

APPENDICES .................................................... 116

A. Technical Aspects of Executing the TIE-GCM ................. 116
   A.1 The Eclipse Machine .................................... 110
   A.2 Procedure for Executing the TIE-GCM .................... 117
   A.3 Comparison of the v1.6 and v1.8 TIE-GCM ................ 119
   A.4 Altitude Variation in the Perturbation Calculation ..... 121
B. February 14, 2002 & August 4, 2004 Dayside Orbit Ranks ..... 123
С. Kp Dayside Orbit Ranks for the Quietest Day of Each Year
   between 2001-2005 .......................................... 128
D. Plots of the Axial Moment Rate of Change ................... 139

REFERENCES .................................................... 146

BIOGRAPHICAL SKETCH ........................................... 156


LIST OF TABLES
2.1 The dates selected as the quietest day of each month from 2001-2005 using International Q days ................. 43 2.2 The quietest day for each month in 2001 and its associated model and magnetic activity parameters ......... 44 2.3 The quietest day for each month in 2002 and its associated model and magnetic activity parameters ......... 44 2.4 The quietest day for each month in 2003 and its associated model and magnetic activity parameters ......... 45 2.5 The quietest day for each month in 2004 and its associated model and magnetic activity parameters ......... 45 2.6 The quietest day for each month in 2005 and its associated model and magnetic activity parameters ......... 46 2.7 The constant values for POWER and CTPOTEN used in the TIE-GCM as a way of varying the Kp .................... 60 2.8 Goodness of Fit Rankings of individual dayside orbit tracks for runs of TIE-GCM using different values of Kp for Feb 14, 2002 for the BF and Br components ............. 61 2.9 The quietest day of the year from 2001-2005 ............... 63 2.10 The overall most highly ranked Kp values for the quietest day of the year in terms of component, year and statistic ............................................. 63 2.11 Comparisons of the Lesur Model and the TIE-GCM for all data on August 14, 2001 ................................... 66 2.12 Comparisons of the Lesur Model and the TIE-GCM for mid-latitudes between ±50° on August 14, 2001 ............. 66 2.13 Gaussian fit parameters for the residual error distributions of Models 1-5 ............................... 71 3.1 Some of the nearest ground magnetic observatories to the South Atlantic Anomaly ................................ 79 3.2 Ranges for the rate of change of the axial dipole moment at the CMB for every 10 years using gufm1 .......... 90 3.3 Ranges for the rate of change of the axial dipole moment at the CMB for CM4, Magsat, OSVM, and CHAOS models .................................................... 93 3.4 Linear fit parameters of trend segments in the total unsigned flux shown in Fig. 3.19 ......................... 104 B.1 Goodness of Fit Rankings of individual dayside orbit tracks for TIE-GCM runs using different values of Kp on Feb 14, 2002 for the BF and Br components ............. 124 B.2 Goodness of Fit Rankings of individual dayside orbit tracks for TIE-GCM runs using different values of Kp on Feb 14, 2002 for the Bθ and Bφ components ............. 125 B.3 Goodness of Fit Rankings of individual dayside orbit tracks for TIE-GCM runs using different values of Kp on Aug 4, 2004 for the BF and Br components .............. 126 B.4 Goodness of Fit Rankings of individual dayside orbit tracks for TIE-GCM runs using different values of Kp on Aug 4, 2004 for the Bθ and Bφ components .............. 127 C.1 Goodness of Fit Rankings of individual dayside orbit tracks for TIE-GCM runs using different values of Kp on Jun 28, 2001 for the BF and Br components ............. 129 C.2 Goodness of Fit Rankings of individual dayside orbit tracks for TIE-GCM runs using different values of Kp on Jun 28, 2001 for the Bθ and Bφ components ............. 130 C.3 Goodness of Fit Rankings of individual dayside orbit tracks for TIE-GCM runs using different, values of Kp on May 24, 2002 for the BF and Br components ............. 131 C.4 Goodness of Fit Rankings of individual dayside orbit tracks for TIE-GCM runs using different values of Kp on May 24, 2002 for the Bθ and Bφ components ............. 132 C.5 Goodness of Fit Rankings of individual dayside orbit tracks for TIE-GCM runs using different values of Kp on Dec 19, 2003 for the BF and Br components ............. 133 C.6 Goodness of Fit Rankings of individual dayside orbit tracks for TIE-GCM runs using different values of Kp on Dec 19, 2003 for the Bθ and Вφ components ............. 134 C.7 Goodness of Fit Rankings of individual dayside orbit tracks for TIE-GCM runs using different values of Kp on Dec 4, 2004 for the BF and Br components .............. 135 C.8 Goodness of Fit Rankings of individual dayside orbit tracks for TIE-GCM runs using different values of Kp on Dec 4, 2004 for the Bθ and Вφ components .............. 136 C.9 Goodness of Fit Rankings of individual dayside orbit tracks for TIE-GCM runs using different values of Kp on Dec 23, 2005 for the BF and Br components ............. 137 C.10 Goodness of Fit Rankings of individual dayside orbit tracks for TIE-GCM runs using different, values of Kp on Dec 23, 2005 for the Bθ and Bφ components ............. 138
LIST OF FIGURES
1.1 The geomagnetic field at the Earth's surface ............... 4 1.2 A sketch of the Earth's geomagnetic field lines ............ 5 1.3 Geomagnetic field components at the Sitka (SIT) Magnetic Observatory ................................................ 8 1.4 The global distribution of INTERMAGNET observatories ....... 9 1.5 Diagram of the CHAMP satellite with locations for the main instrument packages .............................. 11 1.6 CHAMP satellite orbit decay ............................... 15 1.7 The main sources of the Earth's magnetic field ............ 17 1.8 Global secular variation .................................. 18 1.9 An example of secular variation from the Niemegk Magnetic Observatory ...................................... 19 1.10 An example of some geomagnetic jerks in Europe ............ 20 1.11 Association of Geomagnetic Jerks with Length of Day variations ................................................ 21 1.12 The MF5 Lithospheric Field ................................ 22 1.13 Diagram of the magnetosphere .............................. 23 1.14 Ionospheric election density profiles ..................... 25 1.15 Diagram of the ionosphere ................................. 26 1.16 The Kp index for July October 2003 ........................ 28 1.17 The Dst index for October 2003 ............................ 30 1.18 Magnetic Field Components ................................. 31 1.19 Geocentric North, East, Center coordinate system .......... 32 1.20 The power spectrums of various magnetic field models ...... 37 1.21 Martian magnetic field .................................... 38 2.1 Activity indices including the Kp range (red) and F10.7 (blue) for the selected rank 1 Q-days of each month ..................................................... 47 2.2 The eastward and northward components of the height-integrated horizontal current density, in A/m, predicted by the TIE-GCM for February 14, 2002 using GPI inputs .......................................... 48 2.3 The Sq current system for equinox conditions in units of kA ........................................................ 50 2.4 The northward and eastward components of the magnetic perturbation, in nT, predicted by the TIE GCM for February 14, 2002 using GPI inputs ........................ 53 2.5 The total field and downward component of the magnetic perturbation, in nT, predicted by the TIE-GCM for February 14, 2002 using GPI inputs ........................ 54 2.6 The CHAMP residual and TIE-GCM perturbation prediction data along the satellite orbit track for one orbit pass on February 14. 2002 between ±50° latitude ................ 55 2.7 Dayside orbit passes for February 14, 2002 showing TIE-GCM predictions using different F10.7 and CHAMP/CHAOS an CHAMP/CHAOS/TIE-GCM residuals .......................... 57 2.8 Time-series of the average orbit pass statistics MDEV and Mean for each of the selected days spanning the years 2001-2003 for the Bθ component .................. 58 2.9 A comparison of the effects of varying Kp on the TIE-GCM prediction for a dayside orbit pass on February 14, 2002, using a constant F10.7 of 190 ........................ 62 2.10 A sample dayside orbit comparing the Lesur Model with the TIE-GCM ............................................... 65 2.11 The data distribution for the Magfit Models ............... 68 2.12 A Sample orbit showing the TIE-GCM correction for Model 3 ................................................... 69 2.13 Global maps of the TIE-GCM correction ..................... 70 2.14 The error distributions for Magfit Model 1 ................ 71 2.15 The error distributions for Magfit Model 2 ................ 72 2.16 The error distributions for Magfit Model 3 ................ 73 2.17 Difference plots for Models 1, 2 and 3 .................... 74 3.1 The 30-80 keV proton flux count for August 2005 ........... 77 3.2 Proton flux in a slice through the Earth .................. 78 3.3 The SAA ground track from 1590-2005 and the total field from CHAOS in 2005 ........................................ 82 3.4 SAA ground track and strength from 1590-2005 .............. 83 3.5 The velocity of the SAA computed using the gufm1 .......... 84 3.6 SAA track for CM4 and IGRF ................................ 85 3.7 SAA ground track and strength from 5000B.C.-2005A.D. calculated using various models ........................... 87 3.8 The gufm1 rate of change of the axial moment for every 50 years between 1600 and 1950 at the CMB for spherical harmonic degree n=10 in units of mT/century ............... 89 3.9 CM4 rate of change of the axial dipole moment for 1960 1990 at the CMB calculated for n=10 and n=13 in units of mT/century ................................................ 91 3.10 CHAOS, CM4 & OSVM rate of the change of axial moment in 2000 and 2005 at the CMB for n=10 and n=13 in units of mT/century ................................................ 92 3.11 CHAOS rate of change of the axial moment for 2000 & 2005 and the difference at the CMB, n=10 in units of mT/century ................................................ 94 3.12 Magsat & CHAOS rate of the change of axial moment in 1980, 2000 & 2005 at the CMB for either n=10 or n=18 in units of mT/century ....................................... 95 3.13 The radial magnetic field for 2002.5 at the core-mantle boundary using the CHAOS model ............................ 96 3.14 The secular variation of the radial field at the core-mantle boundary computed using the CHAOS model for 2002.5 ................................................ 97 3.15 Maps of the global flux calculated from the CM4 for years 1960, 1980, and 2000 labeled with the locations of two reversed-flux patches .............................. 99 3.16 A series of plots of flux polarity calculated using the gufm1 for spherical harmonic degree 10 ............... 101 3.17 Comparison of the total unsigned flux and normal polarity flux computed using the gufm1 ................... 102 3.18 Evolution of magnetic flux associated with reversed-flux patches, computed using the gufm1 at degree n=10 from 1590-1990 ............................... 103 3.19 The total unsigned magnetic flux computed from various geomagnetic models from 1960-2005 ........................ 105 3.20 The east component of the secular variation at a selection of SAA area, magnetic observatories .......... 106 3.21 The total unsigned flux, its first time-derivative and its second time-derivative calculated using the gufm1 and compared with the sign-changed declination component of secular variation from CLF .................. 108 3.22 Maps of both the radial fluх polarity at the CMB and total field at the surface for 1600, 1650, 1700, 1750, and 1800 ................................................. 110 3.23 Maps of both the radial flux polarity at the CMB and total field at the surface for 1850, 1900, 1950, and 1990 ..................................................... 111 3.24 Maps of both the radial flux polarity at the CMB and total field at the surface for 1790 and 1870 ............. 112 4.1 SWARM Mission satellites ................................. 114 A.1 A comparison of the v1.6 and v1.8 TIE-GCM for a dayside orbit pass on February 14, 2002, using a constant F10.7=190 and constant Kp=0 ............................... 120 A.2 A comparison of the v1.6 and v1.8 TIE GCM for a nightside orbit pass on February 14, 2002, using a constant F10.7=190 and a constant Kp=0 .................. 120 A.3 Difference of maximum altitude range in computation of magnetic perturbation .................................... 122 D.1 The gufm1 rate of change of the axial moment for every 10 years between 1600 and 1740 at the CMB for spherical harmonic degree n=10 in units of mT/century .............. 140 D.2 The gufm1 rate of change of the axial moment for every 10 years between 1750 and 1890 at the CMB for spherical harmonic degree n=10 in units of mT/century .............. 141 D.3 The gufm1 rate of change of the axial dipole nionicmt for every 10 years between 1900 and 1990 at the CMB for spherical harmonic degree n=10 in units of mT/century .... 142 D.4 Rate of change of the axial dipole moment for the CM4, CHAOS, OSVM and Magsat at the CMB for spherical harmonic degree n=10 in units of mT/century .............. 143 D.5 Rate of change of the axial dipole moment for the CM4, CHAOS, OSVM and Magsat at the CMB for spherical harmonic degree n=13 in units of mT/century .............. 144 D.6 The rate of change of the axial dipole moment for CHAOS and CM4 models and the difference at the CMB for spherical harmonic degree n=10 in units of mT/century .... 145


 
Выставка новых поступлений  |  Поступления иностранных книг в библиотеки СО РАН : 2003 | 2006 |2008
 

[О библиотеке | Академгородок | Новости | Выставки | Ресурсы | Библиография | Партнеры | ИнфоЛоция | Поиск]
  © 1997–2024 Отделение ГПНТБ СО РАН  

Документ изменен: Wed Feb 27 14:52:06 2019. Размер: 22,656 bytes.
Посещение N 1319 c 26.04.2010