1 Nano- and Microscience, Engineering, and Technology
1.1 Introduction and Overview: From Micro- to Nanoscale and Beyond
to Stringoscale ............................................................. 1
1.2 Introductory Definitions .................................................... 4
1.3 Current Developments and the Need for Coherent Revolutionary Developments ... 6
1.4 Societal Challenges and Implications ....................................... 10
1.4.1 Microsystems and Microtechnology ..................................... 10
1.4.2 Nanosystems and Nanotechnology ....................................... 10
1.4.3 Nanoengineering and Nanoscience ...................................... 11
1.5 Conclusions ................................................................ 15
Homework Problems .............................................................. 16
References ..................................................................... 16
2 Nano- and Microscale Systems, Devices, and Structures
2.1 Sizing Features: From Micro- to Nanoscale, and from Nano-
to Stringoscale ............................................................ 19
2.1.1 Mendeleyev's Periodic Table of Elements
and Electronic Configurations ........................................ 19
2.1.2 Nanoengineering and Nanoscience ...................................... 24
2.1.3 Smaller Than Nano-, Pico-, and Femtoscale—Reality or Fantasy? ........ 26
2.2 MEMS and NEMS Definitions .................................................. 27
2.3 Introduction to Taxonomy of Nano- and Microsystems Synthesis and Design .... 34
2.4 Introduction to Design and Optimization of Nano- and Microsystems
in the Behavioral Domain ................................................... 47
Homework Problems .............................................................. 51
References ..................................................................... 52
3 Nano- and Microsystems: Classification and Consideration
3.1 Biomimetics, Biological Analogies, and Design of NEMS and MEMS ............. 53
3.1.1 Biomimetics Fundamentals ............................................. 53
3.1.2 Biomimetics for NEMS and MEMS ........................................ 55
3.1.3 Biomimetics, Nano-ICs, and Nanocomputer Architectronics .............. 57
3.1.4 Biomimetics and Nervous Systems ...................................... 61
3.2 Micro- and Nanoelectromechanical Systems: Scaling Laws
and Mathematical Modeling .................................................. 63
3.2.1 Mechanical Systems ................................................... 65
3.2.2 Fluidic Systems ...................................................... 65
3.2.3 Chemical (Biological) Systems ........................................ 65
3.2.4 Thermal Systems ...................................................... 65
3.2.5 Electromagnetic Systems .............................................. 65
3.3 MEMS Examples and MEMS Architectures ....................................... 69
3.3.1 MEMS Examples ........................................................ 69
3.3.2 Nanostructures: Giant Magnetoresistance and Multilayered
Nanostructure ........................................................ 72
3.3.3 Integration of Microactuators and ICs ................................ 74
3.3.4 Microelectromechanical Systems Definitions ........................... 76
3.3.5 MEMS and NEMS Architectures .......................................... 77
3.3.5.1 Linkage Groups in Molecular Building Blocks .................. 84
3.4 Introduction to Microfabrication and Micromachining ........................ 86
3.4.1 Thin-Film Deposition ................................................. 89
3.4.2 Photolithography ..................................................... 91
3.4.3 Etching .............................................................. 92
3.4.4 ICs and Microfabrication ............................................. 92
Homework Problems .............................................................. 93
References ..................................................................... 94
4 Fundamentals of Microfabrication and MEMS Fabrication Technologies
4.1 Introduction and Description of Basic Processes
in Microfabrication ........................................................ 97
4.1.1 Photolithography ..................................................... 99
4.1.2 Etching ............................................................. 102
4.1.3 Bonding ............................................................. 103
4.1.4 Introduction to MEMS Fabrication and Web Site Resources ............. 104
4.2 Microfabrication and Micromachining of ICs, Microstructures,
and Microdevices .......................................................... 107
4.2.1 Oxidation ........................................................... 109
4.2.2 Photolithography .................................................... 109
4.2.3 Etching ............................................................. 110
4.2.4 Doping .............................................................. 111
4.2.5 Metallization ....................................................... 112
4.2.6 Deposition .......................................................... 113
4.2.7 MEMS Assembling and Packaging ....................................... 113
4.3 MEMS Fabrication Technologies ............................................. 114
4.3.1 Bulk Micromachining ................................................. 115
4.3.2 Surface Micromachining .............................................. 119
4.3.2.1 Example Process ............................................. 122
4.3.3 High-Aspect-Ratio (LIGA and LIGA-Like) Technology ................... 127
Homework Problems ............................................................. 131
References .................................................................... 132
5 Devising and Synthesis of NEMS and MEMS
5.1 Motion Nano- and Microdevices: Synthesis and Classification ............... 135
5.1.1 Cardinality ......................................................... 143
5.1.2 Algebra of Sets ..................................................... 144
5.1.3 Sets and Lattices ................................................... 146
5.2 Microaccelerometers as Microelectromechanical Microdevices ................ 150
5.3 Optimization with Application to Synthesis and Classification Solver ...... 156
5.3.1 Illustrative Examples of the MATLAB Application ..................... 157
5.3.2 Linear Programming .................................................. 158
5.3.3 Nonlinear Programming ............................................... 159
5.4 Nanoengineering Bioinformatics and Its Application ........................ 166
5.4.1 Introduction and Definitions ........................................ 166
5.4.2 Basic Bioscience Fundamentals ....................................... 167
5.4.3 Bioinformatics and Its Applications to Escherichia coli Bacteria .... 180
5.4.4 Sequential, Fourier Transform and Autocorrelation
Analysis in Genome Analysis ......................................... 180
5.4.5 Entropy Analysis .................................................... 185
References .................................................................... 189
6 Modeling of Micro- and Nanoscale Electromechanical Systems and Devices
6.1 Introduction to Modeling, Analysis, and Simulation ....................... 191
6.2 Basic Electromagnetics with Applications to MEMS and NEMS ................ 194
6.3 Model Developments of Micro- and Nanoactuators Using
Electromagnetics ......................................................... 213
6.3.1 Lumped-Parameter Mathematical Models of MEMS ...................... 217
6.3.2 Energy Conversion in NEMS and MEMS ................................ 221
6.4 Classical Mechanics and Its Application to MEMS .......................... 227
6.4.1 Newtonian Mechanics ............................................... 230
6.4.1.1 Newtonian Mechanics, Energy Analysis, Generalized
Coordinates, and Lagrange Equations:
Translational Motion ...................................... 230
6.4.1.2 Newtonian Mechanics: Rotational Motion .................... 237
6.4.1.3 Friction Models in Microelectromechanical Systems ......... 241
6.4.2 Lagrange Equations of Motion ...................................... 243
6.4.3 Hamilton Equations of Motion ...................................... 259
6.5 Direct-Current Micromachines ............................................. 261
6.6 Simulation of MEMS in the MATLAB Environment with Examples ............... 266
6.7 Induction Micromachines .................................................. 275
6.7.1 Introduction and Analogies ........................................ 275
6.7.2 Two-Phase Induction Micromotors ................................... 277
6.7.2.1 Control of Induction Micromotors .......................... 277
6.7.2.2 Modeling of Induction Micromotors ......................... 280
6.7.2.2.1 Modeling of Induction Micromotors Using
Kirchhoff's and Newton's Laws ................... 281
6.7.2.2.2 Modeling of Induction Micromotors Using
the Lagrange Equations .......................... 287
6.7.2.2.3 s-Domain Block Diagram of Two-Phase Induction
Micromotors ..................................... 289
6.7.3 Three-Phase Induction Micromotors ................................. 289
6.7.3.1 Dynamics of Induction Micromotors
in the Machine Variables .................................. 290
6.7.3.2 Dynamics of Induction Micromotors
in the Arbitrary Reference Frame .......................... 295
6.7.3.3 Simulation of Induction Micromachines
in the MATLAB Environment ................................. 306
6.8 Synchronous Micromachines ................................................ 313
6.8.1 Introduction and Analogies ........................................ 313
6.8.2 Axial Topology Permanent-Magnet Synchronous
Micromachines ..................................................... 314
6.8.2.1 Fundamentals of Axial Topology Permanent-Magnet
Synchronous Micromachines ................................. 314
6.8.2.2 Mathematical Models of Axial Topology Permanent-Magnet
Synchronous Micromachines ................................. 318
6.8.2.2.1 Lumped-Parameter Modeling and Mathematical
Model Development ............................... 319
6.8.2.2.2 High-Fidelity Modeling and Mathematical Model
Development ..................................... 326
6.8.3 Radial Topology Single-Phase Synchronous Reluctance
Micromotors ....................................................... 329
6.8.3.1 Mathematical Model of Synchronous Reluctance
Micromotors ............................................... 329
6.8.3.2 Simulation of Reluctance Motors ........................... 333
6.8.3.3 Three-Phase Synchronous Reluctance Micromotors ............ 334
6.8.3.3.1 Torque Production Analysis ...................... 337
6.8.3.3.2 Control of Synchronous Reluctance Micromotors ... 337
6.8.3.3.3 Lumped-Parameter Mathematical Models ............ 338
6.8.4 Radial Topology Permanent-Magnet Synchronous Micromachine.......... 340
6.8.4.1 Mathematical Model of Two-Phase Permanent-Magnet
Synchronous Micromotors ................................... 340
6.8.4.2 Radial Topology Three-Phase Permanent-Magnet Synchronous
Micromachines ............................................. 342
6.8.4.3 Mathematical Models of Permanent-Magnet Synchronous
Micromachines in the Arbitrary, Rotor, and Synchronous
Reference Frames .......................................... 357
6.8.4.4 Simulation and Analysis of Permanent-Magnet Synchronous
Micromotors in SIMULINK ................................... 365
6.9 Permanent-Magnet Stepper Micromotors ..................................... 368
6.9.1 Mathematical Model in the Machine Variables ....................... 369
6.9.2 Mathematical Models of Permanent-Magnet Stepper Micromotors
in the Rotor and Synchronous Reference Frames ..................... 372
6.10 Piezotransducers ......................................................... 377
6.10.1 Piezoactuators: Steady-State Models and Characteristics ........... 379
6.10.2 Mathematical Models of Piezoactuators: Dynamics
and Nonlinear Equations of Motion ................................. 389
6.11 Modeling of Electromagnetic Radiating Energy Microdevices ................ 392
6.12 Thermodynamics, Thermoanalysis, and Heat Equation ........................ 405
Homework Problems ............................................................. 407
References .................................................................... 413
7 Quantum Mechanics and Its Applications
7.1 Atomic Structures and Quantum Mechanics ................................... 415
7.1.1 Introduction ........................................................ 415
7.1.2 Some Basic Fundamentals ............................................. 418
7.1.3 Quantum Theory: Basic Principles .................................... 422
7.1.4 Harmonic Oscillator: Newtonian Mechanics, Schrodinger Equation,
and Quantum Theory .................................................. 428
7.1.5 Schrodinger Equation for the Hydrogen Atom .......................... 445
7.1.6 Some Applications of the Schrodinger Equation and Quantum
Mechanics ........................................................... 452
7.1.6.1 Mathematical Modeling of Atoms with Many Electrons .......... 452
7.1.6.2 Empirical Constants Concept ................................. 452
7.1.6.3 Hartree-Fock Modeling Method: Self-Consistent
Field Theory ................................................ 452
7.2 Molecular and Nanostructure Dynamics ...................................... 453
7.2.1 Schrodinger Equation and Wave Function Theory ....................... 454
7.2.1.1 Mathematical Models: Energy-Based Quantum
and Classical Mechanics ..................................... 455
7.2.2 Density Functional Theory ........................................... 459
7.2.3 Nanostructures and Molecular Dynamics ............................... 462
7.2.4 Electromagnetic Fields and Their Quantization ....................... 464
7.3 Quantum Mechanics and Energy Bands ........................................ 470
Homework Problems ............................................................. 483
References .................................................................... 484
8 Molecular and Carbon Nanoelectronics
8.1 Past, Current, and Future of Electronics with Prospects
for 2020 and Beyond ....................................................... 487
8.2 Fundamentals .............................................................. 491
8.3 Carbon Nanotubes .......................................................... 494
8.3.1 Analysis of Carbon Nanotubes ........................................ 494
8.3.2 Classification of Carbon Nanotubes .................................. 501
8.4 Carbon-Based Nanoelectronics and Three-Dimensional Nano-ICs ............... 505
8.4.1 Fullerene-Centered Nanoelectronics .................................. 506
8.4.1.1 Heterofullerenes ............................................ 509
8.4.1.2 Endohedral Fullerenes ....................................... 512
8.4.2 Biocentered Nanoelectronics ......................................... 516
8.4.3 Nanoelectronics and Analysis of Molecular Electronic Devices ........ 522
Homework Problems ............................................................. 535
References .................................................................... 536
9 Control of MEMS and NEMS
9.1 Continuous-Time and Discrete-Time MEMS .................................... 539
9.2 Analog Control of MEMS Using Transfer Functions ........................... 546
9.2.1 Analog PID Controllers .............................................. 546
9.2.2 Control of a Microsystem with Permanent-Magnet
DC Micromotor Using PID Controller .................................. 551
9.3 The Hamilton-Jacobi Theory and Optimal Control of MEMS and NEMS ........... 561
9.3.1 Stabilization Problem for Linear MEMS and NEMS ...................... 566
9.3.2 Tracking Problem for Linear MEMS and NEMS ........................... 575
9.3.3 Transformation Method and Tracking Control of Linear MEMS ........... 577
9.3.4 Time-Optimal Control of MEMS and NEMS ............................... 581
9.4 Sliding Mode Control of MEMS and NEMS ..................................... 584
9.4.1 Feedback Linearization and Control of Permanent-Magnet
Synchronous Micromotors ............................................. 589
9.5 Constrained Control of Nonlinear MEMS and NEMS ............................ 592
9.6 Optimization of Microsystems Using Nonquadratic Performance
Functionals ............................................................... 595
9.7 Hamilton-Jacobi Theory and Quantum Mechanics .............................. 601
9.8 Lyapunov Stability Theory in Analysis and Control of MEMS and NEMS ........ 603
9.9 Digital Control of MEMS and NEMS .......................................... 614
9.9.1 Introduction to Digital Control and Transfer Function Concept ....... 614
9.9.2 Control of Digital Microsystems with Permanent-Magnet
DC Micromotors ...................................................... 624
9.9.3 Control of Linear Discrete-Time MEMS and NEMS Using
the Hamilton-Jacobi Theory .......................................... 631
9.9.4 Constrained Optimization of Discrete-Time MEMS and NEMS ............. 635
9.9.5 Tracking Control of Discrete-Time Microsystems ...................... 640
Homework Problems ............................................................. 642
References .................................................................... 643
10 Examples in Synthesis, Analysis, Design and Fabrication of MEMS
10.1 Introduction ............................................................. 645
10.2 Analysis of Energy Conversion and MEMS Performance from Materials
and Fabrication Viewpoints ............................................... 646
10.3 Analysis of Translational Microtransducers ............................... 657
10.4 Single-Phase Reluctance Micromotors: Modeling, Analysis, and Control ..... 660
10.5 Microfabrication Topics .................................................. 661
10.5.1 Microcoils/Microwindings Fabrication through the Copper,
Nickel, and Aluminum Electrodeposition ............................ 662
10.5.2 Nix%Fe100-x% Thin-Film Electrodeposition ............................ 671
10.5.3 NiFeMo and NiCo Thin-Film Electrodeposition ....................... 673
10.5.4 Micromachined Polymer Magnets ..................................... 674
10.5.5 Planarization ..................................................... 675
10.6 Magnetization Dynamics of Thin Films ..................................... 675
10.7 Microstructures and Microtransducers with Permanent-Magnet:
Micromirror Actuators .................................................... 676
10.7.1 Electromagnetic System Modeling in Microactuators with
Permanent Magnets: High-Fidelity Modeling and Analysis ............ 683
10.7.2 Electromagnetic Torques and Forces: Preliminaries ................. 683
10.7.3 Coordinate Systems and Electromagnetic Fields ..................... 684
10.7.4 Electromagnetic Torques and Forces ................................ 686
10.7.5 Some Other Aspects of Microactuator Design and Optimization ....... 690
10.8 Reluctance Electromagnetic Micromotors .................................. 691
10.9 Micromachined Polycrystalline Silicon Carbide Micromotors ............... 696
10.10 Axial Electromagnetic Micromotors ....................................... 698
10.11 Cognitive Computer-Aided Design of MEMS ................................. 699
Homework Problems ............................................................. 702
References .................................................................... 703
Index ......................................................................... 705
|