List of Figures ............................................................. ix
List of Tables ............................................................. xii
Preface ................................................................... xiii
Acknowledgements ........................................................... xiv
1. Atmospheric Convection with Analogies in Astrophysics and
the Laboratory .......................................................... 15
Robert M. Kerr
1.1 Introduction ........................................................ 15
1.2 Reynolds number and modeling ........................................ 17
1.3 Dry convective scaling .............................................. 20
1.4 Precipitating convection ............................................ 23
1.5 Hierarchy of scales ................................................. 27
1.6 Improving LES ....................................................... 30
1.7 Conclusion .......................................................... 32
2. Solar and Stellar Convection:
A Perspective for Geophysical Fluid Dynamicists ......................... 37
Peter A. Gilman
2.1 Introduction ........................................................ 38
2.2 Solar motions ....................................................... 39
2.3 Global features of convection zone .................................. 43
2.3.1 Structure with radius ......................................... 43
2.3.2 Influence of rotation ......................................... 45
2.3.3 Upper boundary layer .......................................... 45
2.3.4 Lower boundary layer .......................................... 46
2.3.5 Waves and instabilities in and near the convection zone ....... 47
2.4 Simulating solar convection ......................................... 48
2.5 Summary of methods and results for compressible convection .......... 49
2.6 Convection as driver of differential rotation ....................... 51
2.7 Interaction of the convection zone with the solar surfaces and
the shear layer at the base ......................................... 52
2.8 Concluding remarks .................................................. 54
3. Unsteady Non-Penetrative Thermal Convection From Non-Uniform Surfaces ... 59
Richard D. Keane, Noboyuki Fujisawa and Ronald J. Adrian
3.1 Introduction ........................................................ 59
3.2 Experimental apparatus and procedure ................................ 62
3.3 Results ............................................................. 65
3.3.1 Heat transfer characteristics ................................. 65
3.3.2 Existence of horizontal mean flow ............................. 67
3.3.3 Patterns of convection ........................................ 67
3.4 Summary and conclusions ............................................. 74
4. Astrophysical Convection and Dynamos .................................... 85
Axel Brandenburg, Ake Nordlund and Robert F. Stein
4.1 Introduction ........................................................ 85
4.2 Deep solar convection ............................................... 87
4.3 Low Prandtl number effects .......................................... 88
4.4 The entropy gradient ................................................ 90
4.5 The thermal time scale problem ...................................... 94
4.6 The formation of magnetic structures ................................ 97
4.7 Magnetic dynamo action .............................................. 99
4.8 Downward pumping ................................................... 100
4.9 Outstanding problems ............................................... 101
5. Dynamics of Cumulus Entrainment ........................................ 107
Wojciech W. Grabowski
5.1 Introduction ....................................................... 107
5.2 Turbulent entrainment in cumulus clouds and in buoyancy-driven
flows .............................................................. 111
5.3 Entrainment as a result of interfacial instabilities ............... 113
5.4 Entrainment and buoyancy reversal .................................. 121
5.5 Conclusions ........................................................ 123
6. The 2/7 Law in Turbulent Thermal Convection ............................ 129
Stephane Zaleski
6.1 Introduction ....................................................... 129
6.2 Problem definition ................................................. 130
6.3 Simple approaches to scaling ....................................... 131
6.3.1 Similarity arguments based on dimensional analysis ........... 131
6.3.2 Marginal stability and boundary layer similarity ............. 132
6.4 Mechanistic approaches to scaling .................................. 133
6.4.1 Inviscid interior scaling .................................... 133
6.4.2 Plume theories with a single length scale .................... 134
6.4.3 Plume theory with several length scales ...................... 135
6.4.4 2/7 scaling: Shraiman-Siggia theory .......................... 136
6.4.5 Range of validity ............................................ 136
6.5 Comparison with experiments ........................................ 138
6.6 Critique ........................................................... 139
6.7 Conclusion ......................................................... 140
7. Organization of Atmospheric Convection over the Tropical Oceans:
The Role of Vertical Shear and Buoyancy ................................ 145
Margaret A. LeMone
7.1 Introduction ....................................................... 145
7.2 Convection in the fair weather mixed layer ......................... 146
7.2.1 Larger aspect-ratio mixed-layer banded structures ............ 149
7.3 Precipitating convection ........................................... 152
7.3.1 Buoyancy ..................................................... 152
7.3.2 Shear ........................................................ 154
7.4 Conclusions ........................................................ 161
8. Images of Hard Turbulence: Buoyant Plumes in a Crosswind ............... 165
Andrew Belmonte and Albert Libchaber
8.1 Introduction ....................................................... 165
8.2 Hard Turbulence .................................................... 167
8.3 Experimental techniques ............................................ 169
8.3.1 The convection cell .......................................... 169
8.3.2 Visualization ................................................ 170
8.3.3 Image processing ............................................. 172
8.4 Shadowgraph images ................................................. 172
8.5 Intensity correlation measurements ................................. 177
8.6 Discussion ......................................................... 179
9. Convection in Cloud-Topped Atmospheric Boundary Layers ................. 185
Christopher S. Bretherton
9.1 Introduction ....................................................... 185
9.2 Global distribution and importance of boundary layer cloud ......... 186
9.3 Convective dynamics of CTBLs ....................................... 190
9.4 Further observations and conclusions ............................... 195
10. Solar Granulation: A Surface Phenomenon ................................ 199
Mark Peter Rast
10.1 Introduction ...................................................... 200
10.2 Granular dynamics ................................................. 201
10.3 Heat transport .................................................... 207
10.4 Flow stability .................................................... 211
10.5 Conclusion ........................................................ 216
11. Turbulent Convection: What has Rotation Taught Us? ..................... 221
Joseph Werne
11.1 Introduction ...................................................... 221
11.2 Nonrotating Rayleigh-Benard convection ............................ 222
11.3 Turbulent convection theories ..................................... 223
11.3.1 Priestley's theory ......................................... 223
11.3.2 Kadanoff, Zaleski and Zanetti's theory ..................... 223
11.3.3 Shraiman and Siggia's theory ............................... 224
11.3.4 Cautionary comment on scaling theories ..................... 224
11.3.5 She's theory ............................................... 225
11.3.6 Yakhot's theory ............................................ 225
11.4 Rotating Rayleigh-Benard convection ............................... 226
11.5 Numerical simulation of rotating convection ....................... 226
11.5.1 Intermittent flow fields ................................... 227
11.5.2 Cyclonic plumes ............................................ 227
11.5.3 Ekman pumping .............................................. 227
11.5.4 Linear thermal Ekman layer ................................. 230
11.5.5 Nonlinear Ekman spirals .................................... 232
11.5.6 Plume-plume interactions ................................... 234
11.5.7 Rotating hard turbulence ................................... 235
11.6 Conclusions ....................................................... 236
12. Helical Buoyant Convection ............................................. 241
Douglas Lilly
12.1 Rotating thunderstorms and tornadoes .............................. 241
12.2 Analysis and illustrations ........................................ 244
12.3 Further discussion ................................................ 250
13. Modeling Mantle Convection: A Significant Challenge in Geophysical
Fluid Dynamics ......................................................... 257
David A. Yuen, S.Balachandar and U.Hansen
13.1 Introduction ...................................................... 258
13.2 Model and numerical techniques .................................... 259
13.2.1 Anelastic liquid model ..................................... 260
13.2.2 Internal solid-state phase transitions ..................... 261
13.2.3 Thermal-chemical convection ................................ 262
13.2.4 Mantle rheology ............................................ 263
13.2.5 Numerical methodologies .................................... 264
13.3 Past achievements and computational challenges .................... 264
13.3.1 Sample past results ........................................ 265
13.3.2 Computational requirements ................................. 268
13.4 Results ........................................................... 269
13.4.1 Viscous heating in mantle convection ....................... 269
13.4.2 High Rayleigh number thermal-chemical convection ........... 271
13.5 Perspectives and future directions ................................ 273
14. Turbulent Transport in Rotating Compressible Convection ................ 295
Nicholas H. Brummell
14.1 Introduction ...................................................... 295
14.2 Local modelling of rotating compressible convection ............... 297
14.2.1 Turbulent transport of convective energy ................... 299
14.2.2 Turbulent transport of (angular) momentum .................. 302
14.3 Conclusions ....................................................... 306
15. Potential Vorticity, Resonance and Dissipation in Rotating Convective
Turbulence ............................................................. 309
Peter Bartello
15.1 Background ........................................................ 310
15.2 Normal mode equations, conservation and resonance ................. 312
15.2.1 The <GGG> interactions ..................................... 314
15.2.2 The <AAA> interactions ..................................... 314
15.2.3 The <GAA> interactions ..................................... 314
15.2.4 The <GGA> interactions ..................................... 314
15.3 Numerical Results ................................................. 315
15.3.1 Metais et al. (1994) revisited ............................. 315
15.3.2 Simulations with large vertical dissipation ................ 316
15.4 Conclusions ....................................................... 320
16. Numerical Simulations of Convection in Protostellar Accretion Disks .... 323
William Cabot
16.1 Introduction ...................................................... 323
16.1.1 What are protostellar accretion disks? ..................... 323
16.1.2 Why is convection (potentially) important? ................. 324
16.2 Properties of protostellar disks .................................. 326
16.2.1 General disk properties .................................... 326
16.2.2 Under what conditions do disks become convective? .......... 326
16.2.3 Simplifying assumptions .................................... 327
16.3 Numerical hydrodynamic simulations ................................ 327
16.3.1 Further simplifying assumptions ............................ 327
16.3.2 Governing equations ........................................ 329
16.3.3 Boundary conditions ........................................ 330
16.3.4 Parameters ................................................. 331
16.4 Simulation results ................................................ 332
16.4.1 Incompressible simulations ................................. 332
16.4.2 Compressible simulations ................................... 332
16.5 Discussion ........................................................ 336
16.5.1 Why does disk convection generate inward transport of
angular momentum? .......................................... 339
16.5.2 What are the consequences? ................................. 340
16.5.3 What more needs to be done? ................................ 341
16.5.4 Conclusions ................................................ 342
17. A New Model for Turbulence: Convection Rotation and 2D ................. 345
V.M.Canuto, M.S.Dubovikov, A.Dienstfrey and D.J.Wielaard
17.1 Turbulent convection .............................................. 345
17.1.1 New stochastic equations ................................... 345
17.1.2 Numerical results ......................................... 347
17.1.3 Conclusions ................................................ 347
17.2 Rotating turbulence ............................................... 347
17.2.1 Basic results .............................................. 347
17.2.2 2D-3D states in rotating turbulence ........................ 352
17.2.3 Decaying turbulence ........................................ 353
17.2.4 Conclusions ................................................ 354
17.3 2D Turbulence ..................................................... 354
17.3.1 Basic features ............................................. 354
17.3.2 Basic equations. Time evolution of the energy spectrum ..... 354
17.3.3 Numerical results .......................................... 355
17.3.4 Conclusions ................................................ 357
18. Transport Using Transilient Matrices ................................... 363
Roland B. Stull and Jerzy Bartnicki
18.1 Introduction ...................................................... 363
18.2 A transilient turbulence parameterization ......................... 365
18.2.1 Mixing potential, Y, first estimate ........................ 366
18.2.2 Influences of nonlocal static stability .................... 366
18.2.3 Convective overturning and subgrid turbulence .............. 367
18.2.4 Unequal grid spacing ....................................... 368
18.2.5 Transilient matrices ....................................... 368
18.2.6 Use of transilient matrices ................................ 369
18.2.7 Turbulent flux and mixed-layer depth ....................... 369
18.3 Split time step and the destabilization problem ................... 369
18.4 Calibration ....................................................... 371
18.5 Illustrative model ................................................ 372
18.6 Simulation results for idealized scenarios ........................ 373
18.6.1 Neutral boundary layer ..................................... 374
18.6.2 Unstable (free-convective) mixed layer ..................... 376
18.6.3 Mechanically mixed layer ................................... 377
18.6.4 Both buoyant and mechanically mixed layer .................. 378
18.6.5 Stable boundary layer ...................................... 378
18.6.6 Diurnal cycles of boundary layer forcings
(including pollution dispersion) ............................ 380
18.6.7 Discussion ................................................. 382
18.7 Conclusions ....................................................... 384
Index ...................................................................... 389
|