1 Introduction ............................................ 1
Exercises ............................................... 8
2 The Basic Theory ........................................ 9
2.1 Weierstrass Equations .............................. 9
2.2 The Group Law ..................................... 12
2.3 Projective Space and the Point at Infinity ........ 18
2.4 Proof of Associativity ............................ 20
2.4.1 The Theorems of Pappus and Pascal .......... 32
2.5 Other Equations for Elliptic Curves ............... 35
2.5.1 Legendre Equation ........................... 35
2.5.2 Cubic Equations ............................. 35
2.5.3 Quartic Equations ........................... 36
2.5.4 Intersection of Two Quadratic Surfaces ...... 39
2.6 The j-invariant ................................... 41
2.7 Elliptic Curves in Characteristic 2 ............... 44
2.8 Endomorphisms ..................................... 46
2.9 Singular Curves ................................... 55
2.10 Elliptic Curves mod n ............................. 59
Exercises .............................................. 67
3 Torsion Points ......................................... 73
3.1 Torsion Points ..................................... 73
3.2 Division Polynomials ............................... 76
3.3 The Weil Pairing ................................... 82
Exercises .............................................. 86
4 Elliptic Curves over Finite Fields ..................... 89
4.1 Examples ........................................... 89
4.2 The Frobenius Endomorphism ......................... 92
4.3 Determining the Group Order ........................ 96
4.3.1 Subfield Curves .............................. 96
4.3.2 Legendre Symbols ............................. 98
4.3.3 Orders of Points ............................ 100
4.3.4 Baby Step, Giant Step ....................... 103
4.4 A Family of Curves ................................ 105
4.5 Schoof's Algorithm ................................ 113
4.6 Supersingular Curves .............................. 120
Exercises ............................................. 130
5 The Discrete Logarithm Problem ........................ 133
5.1 The Index Calculus ................................ 134
5.2 General Attacks on Discrete Logs .................. 136
5.2.1 Baby Step, Giant Step ....................... 136
5.2.2 Pollard's ρ and λ Methods ................... 137
5.2.3 The Pohlig-Hellman Method ................... 141
5.3 The MOV Attack .................................... 144
5.4 Anomalous Curves .................................. 147
5.5 The Tate-Lichtenbaum Pairing ...................... 153
5.6 Other Attacks ..................................... 156
Exercises ............................................. 156
6 Elliptic Curve Cryptography ........................... 159
6.1 The Basic Setup ................................... 159
6.2 Diffie-Hellman Key Exchange ....................... 160
6.3 Massey-Omura Encryption ........................... 163
6.4 ElGamal Public Key Encryption ..................... 164
6.5 ElGamal Digital Signatures ........................ 165
6.6 The Digital Signature Algorithm ................... 168
6.7 A Public Key Scheme Based on Factoring ............ 169
6.8 A Cryptosystem Based on the Weil Pairing .......... 173
Exercises ............................................. 175
7 Other Applications .................................... 179
7.1 Factoring Using Elliptic Curves ................... 179
7.2 Primality Testing ................................. 184
Exercises ............................................. 187
8 Elliptic Curves over Q ................................ 189
8.1 The Torsion Subgroup. The Lutz-Nagell Theorem ..... 189
8.2 Descent and the Weak Mordell-Weil Theorem ......... 198
8.3 Heights and the Mordell-Weil Theorem .............. 206
8.4 Examples .......................................... 214
8.5 The Height Pairing ................................ 221
8.6 Fermat's Infinite Descent ......................... 222
8.7 2-Selmer Groups; Shafarevich-Tate Groups .......... 227
8.8 A Nontrivial Shafarevich-Tate Group ............... 229
8.9 Galois Cohomology ................................. 234
Exercises ............................................. 244
9 Elliptic Curves over C ................................ 247
9.1 Doubly Periodic Functions ......................... 247
9.2 Tori are Elliptic Curves .......................... 257
9.3 Elliptic Curves over C ............................ 262
9.4 Computing Periods ................................. 275
9.4.1 The Arithmetic-Geometric Mean ............... 277
9.5 Division Polynomials .............................. 283
Exercises ............................................. 291
10 Complex Multiplication ................................ 295
10.1 Elliptic Curves over C ........................... 295
10.2 Elliptic Curves over Finite Fields ............... 302
10.3 Integrality of j-invariants ...................... 306
10.4 Numerical Examples ............................... 314
10.5 Kronecker's Jugendtraum .......................... 320
Exercises ............................................. 321
11 Divisors .............................................. 323
11.1 Definitions and Examples ......................... 323
11.2 The Weil Pairing ................................. 333
11.3 The Tate-Lichtenbaum Pairing ..................... 338
11.4 Computation of the Pairings ...................... 341
11.5 Genus One Curves and Elliptic Curves ............. 346
Exercises ............................................. 353
12 Zeta Functions ........................................ 355
12.1 Elliptic Curves over Finite Fields ............... 355
12.2 Elliptic Curves over Q ........................... 359
Exercises ............................................. 368
13 Fermat's Last Theorem ................................. 371
13.1 Overview ......................................... 371
13.2 Galois Representations ........................... 374
13.3 Sketch of Ribet's Proof .......................... 380
13.4 Sketch of Wiles's Proof .......................... 387
A Number Theory .......................................... 397
B Groups ................................................. 403
C Fields ................................................. 407
References ............................................... 415
Index .................................................... 425
|