Washington L. Elliptic curves: number theory and cryptography
Навигация

Выставка новых поступлений  |  Поступления иностранных книг в библиотеки СО РАН : 2003 | 2006 |2008
 
Книжные оглавления
Washington L.C. Elliptic curves: number theory and cryptography / Washington L.C. - Boca Raton: Chapman & Hall/CRC, 2003. - 428 p. - (Discrete mathematics and its applications; vol.24). - ISBN 1-58488-365-0.
 
ОглавлениеСноска

1 Introduction ............................................ 1 Exercises ............................................... 8 2 The Basic Theory ........................................ 9 2.1 Weierstrass Equations .............................. 9 2.2 The Group Law ..................................... 12 2.3 Projective Space and the Point at Infinity ........ 18 2.4 Proof of Associativity ............................ 20 2.4.1 The Theorems of Pappus and Pascal .......... 32 2.5 Other Equations for Elliptic Curves ............... 35 2.5.1 Legendre Equation ........................... 35 2.5.2 Cubic Equations ............................. 35 2.5.3 Quartic Equations ........................... 36 2.5.4 Intersection of Two Quadratic Surfaces ...... 39 2.6 The j-invariant ................................... 41 2.7 Elliptic Curves in Characteristic 2 ............... 44 2.8 Endomorphisms ..................................... 46 2.9 Singular Curves ................................... 55 2.10 Elliptic Curves mod n ............................. 59 Exercises .............................................. 67 3 Torsion Points ......................................... 73 3.1 Torsion Points ..................................... 73 3.2 Division Polynomials ............................... 76 3.3 The Weil Pairing ................................... 82 Exercises .............................................. 86 4 Elliptic Curves over Finite Fields ..................... 89 4.1 Examples ........................................... 89 4.2 The Frobenius Endomorphism ......................... 92 4.3 Determining the Group Order ........................ 96 4.3.1 Subfield Curves .............................. 96 4.3.2 Legendre Symbols ............................. 98 4.3.3 Orders of Points ............................ 100 4.3.4 Baby Step, Giant Step ....................... 103 4.4 A Family of Curves ................................ 105 4.5 Schoof's Algorithm ................................ 113 4.6 Supersingular Curves .............................. 120 Exercises ............................................. 130 5 The Discrete Logarithm Problem ........................ 133 5.1 The Index Calculus ................................ 134 5.2 General Attacks on Discrete Logs .................. 136 5.2.1 Baby Step, Giant Step ....................... 136 5.2.2 Pollard's ρ and λ Methods ................... 137 5.2.3 The Pohlig-Hellman Method ................... 141 5.3 The MOV Attack .................................... 144 5.4 Anomalous Curves .................................. 147 5.5 The Tate-Lichtenbaum Pairing ...................... 153 5.6 Other Attacks ..................................... 156 Exercises ............................................. 156 6 Elliptic Curve Cryptography ........................... 159 6.1 The Basic Setup ................................... 159 6.2 Diffie-Hellman Key Exchange ....................... 160 6.3 Massey-Omura Encryption ........................... 163 6.4 ElGamal Public Key Encryption ..................... 164 6.5 ElGamal Digital Signatures ........................ 165 6.6 The Digital Signature Algorithm ................... 168 6.7 A Public Key Scheme Based on Factoring ............ 169 6.8 A Cryptosystem Based on the Weil Pairing .......... 173 Exercises ............................................. 175 7 Other Applications .................................... 179 7.1 Factoring Using Elliptic Curves ................... 179 7.2 Primality Testing ................................. 184 Exercises ............................................. 187 8 Elliptic Curves over Q ................................ 189 8.1 The Torsion Subgroup. The Lutz-Nagell Theorem ..... 189 8.2 Descent and the Weak Mordell-Weil Theorem ......... 198 8.3 Heights and the Mordell-Weil Theorem .............. 206 8.4 Examples .......................................... 214 8.5 The Height Pairing ................................ 221 8.6 Fermat's Infinite Descent ......................... 222 8.7 2-Selmer Groups; Shafarevich-Tate Groups .......... 227 8.8 A Nontrivial Shafarevich-Tate Group ............... 229 8.9 Galois Cohomology ................................. 234 Exercises ............................................. 244 9 Elliptic Curves over C ................................ 247 9.1 Doubly Periodic Functions ......................... 247 9.2 Tori are Elliptic Curves .......................... 257 9.3 Elliptic Curves over C ............................ 262 9.4 Computing Periods ................................. 275 9.4.1 The Arithmetic-Geometric Mean ............... 277 9.5 Division Polynomials .............................. 283 Exercises ............................................. 291 10 Complex Multiplication ................................ 295 10.1 Elliptic Curves over C ........................... 295 10.2 Elliptic Curves over Finite Fields ............... 302 10.3 Integrality of j-invariants ...................... 306 10.4 Numerical Examples ............................... 314 10.5 Kronecker's Jugendtraum .......................... 320 Exercises ............................................. 321 11 Divisors .............................................. 323 11.1 Definitions and Examples ......................... 323 11.2 The Weil Pairing ................................. 333 11.3 The Tate-Lichtenbaum Pairing ..................... 338 11.4 Computation of the Pairings ...................... 341 11.5 Genus One Curves and Elliptic Curves ............. 346 Exercises ............................................. 353 12 Zeta Functions ........................................ 355 12.1 Elliptic Curves over Finite Fields ............... 355 12.2 Elliptic Curves over Q ........................... 359 Exercises ............................................. 368 13 Fermat's Last Theorem ................................. 371 13.1 Overview ......................................... 371 13.2 Galois Representations ........................... 374 13.3 Sketch of Ribet's Proof .......................... 380 13.4 Sketch of Wiles's Proof .......................... 387 A Number Theory .......................................... 397 B Groups ................................................. 403 C Fields ................................................. 407 References ............................................... 415 Index .................................................... 425


Вверх Washington L.C. Elliptic curves: number theory and cryptography / Washington L.C. - Boca Raton: Chapman & Hall/CRC, 2003. - 428 p. - (Discrete mathematics and its applications; vol.24). - ISBN 1-58488-365-0.

Сигла: 050По алфавиту | По темам ||| Математика
[О библиотеке | Академгородок | Новости | Выставки | Ресурсы | Библиография | Партнеры | ИнфоЛоция | Поиск]
  © 1997–2024 Отделение ГПНТБ СО РАН  

Документ изменен: Wed Feb 27 14:51:58 2019. Размер: 11,641 bytes.
Посещение N 4176 с 24.09.2007