Preface to the Second Edition ...................................... xiii
Preface .............................................................. xv
List of Symbols ..................................................... xix
1 Introduction ........................................................ 1
Part I Basics ................................... 7
2 Statistical Mechanics ............................................... 9
2.1 Entropy and Temperature ......................................... 9
2.2 Classical Statistical Mechanics ................................ 13
2.2.1 Ergodicity ............................................... 15
2.3 Questions and Exercises ........................................ 17
3 Monte Carlo Simulations ............................................ 23
3.1 The Monte Carlo Method ......................................... 23
3.1.1 Importance Sampling ...................................... 24
3.1.2 The Metropolis Method .................................... 27
3.2 A Basic Monte Carlo Algorithm .................................. 31
3.2.1 The Algorithm ............................................ 31
3.2.2 Technical Details ........................................ 32
3.2.3 Detailed Balance versus Balance .......................... 42
3.3 Trial Moves .................................................... 43
3.3.1 Translational Moves ...................................... 43
3.3.2 Orientational Moves ...................................... 48
3.4 Applications ................................................... 51
3.5 Questions and Exercises ........................................ 58
4 Molecular Dynamics Simulations ..................................... 63
4.1 Molecular Dynamics: The Idea ................................... 63
4.2 Molecular Dynamics: A Program .................................. 64
4.2.1 Initialization ........................................... 65
4.2.2 The Force Calculation .................................... 67
4.2.3 Integrating the Equations of Motion ...................... 69
4.3 Equations of Motion ............................................ 71
4.3.1 Other Algorithms ......................................... 74
4.3.2 Higher-Order Schemes ..................................... 77
4.3.3 Liouville Formulation of Time-Reversible Algorithms ...... 77
4.3.4 Lyapunov Instability ..................................... 81
4.3.5 One More Way to Look at the Verlet Algorithm ............. 82
4.4 Computer Experiments ........................................... 84
4.4.1 Diffusion ................................................ 87
4.4.2 Order-n Algorithm to Measure Correlations ................ 90
4.5 Some Applications .............................................. 97
4.6 Questions and Exercises ....................................... 105
Part II Ensembles ............................. 109
5 Monte Carlo Simulations in Various Ensembles ...................... 111
5.1 General Approach .............................................. 112
5.2 Canonical Ensemble ............................................ 112
5.2.1 Monte Carlo Simulations ................................. 113
5.2.2 Justification of the Algorithm .......................... 114
5.3 Microcanonical Monte Carlo .................................... 114
5.4 Isobaric-Isothermal Ensemble .................................. 115
5.4.1 Statistical Mechanical Basis ............................ 116
5.4.2 Monte Carlo Simulations ................................. 119
5.4.3 Applications ............................................ 122
5.5 Isotension-Isothermal Ensemble ................................ 125
5.6 Grand-Canonical Ensemble ...................................... 126
5.6.1 Statistical Mechanical Basis ............................ 127
5.6.2 Monte Carlo Simulations ................................. 130
5.6.3 Justification of the Algorithm .......................... 130
5.6.4 Applications ............................................ 133
5.7 Questions and Exercises ....................................... 135
6 Molecular Dynamics in Various Ensembles ........................... 139
6.1 Molecular Dynamics at Constant Temperature .................... 140
6.1.1 The Andersen Thermostat ................................. 141
6.1.2 Nose-Hoover Thermostat .................................. 147
6.1.3 Nose-Hoover Chains ...................................... 155
6.2 Molecular Dynamics at Constant Pressure ....................... 158
6.3 Questions and Exercises ....................................... 160
Part III Free Energies and Phase Equilibria ... 165
7 Free Energy Calculations .......................................... 167
7.1 Thermodynamic Integration ..................................... 168
7.2 Chemical Potentials ........................................... 172
7.2.1 The Particle Insertion Method ........................... 173
7.2.2 Other Ensembles ......................................... 176
7.2.3 Overlapping Distribution Method ......................... 179
7.3 Other Free Energy Methods ..................................... 183
7.3.1 Multiple Histograms ..................................... 183
7.3.2 Acceptance Ratio Method ................................. 189
7.4 Umbrella Sampling ............................................. 192
7.4.1 Nonequilibrium Free Energy Methods ...................... 196
7.5 Questions and Exercises ....................................... 199
8 The Gibbs Ensemble ................................................ 201
8.1 The Gibbs Ensemble Technique .................................. 203
8.2 The Partition Function ........................................ 204
8.3 Monte Carlo Simulations ....................................... 205
8.3.1 Particle Displacement ................................... 205
8.3.2 Volume Change ........................................... 206
8.3.3 Particle Exchange ....................................... 208
8.3.4 Implementation .......................................... 208
8.3.5 Analyzing the Results ................................... 214
8.4 Applications .................................................. 220
8.5 Questions and Exercises ....................................... 223
9 Other Methods to Study Coexistence ................................ 225
9.1 Semigrand Ensemble ............................................ 225
9.2 Tracing Coexistence Curves .................................... 233
10 Free Energies of Solids .......................................... 241
10.1 Thermodynamic Integration ................................... 242
10.2 Free Energies of Solids ..................................... 243
10.2.1 Atomic Solids with Continuous Potentials ............ 244
10.3 Free Energies of Molecular Solids ........................... 245
10.3.1 Atomic Solids with Discontinuous Potentials .......... 248
10.3.2 General Implementation Issues ........................ 249
10.4 Vacancies and Interstitials ................................. 263
10.4.1 Free Energies ........................................ 263
10.4.2 Numerical Calculations ............................... 266
11 Free Energy of Chain Molecules ................................... 269
11.1 Chemical Potential as Reversible Work ....................... 269
11.2 Rosenbluth Sampling ......................................... 271
11.2.1 Macromolecules with Discrete Conformations ........... 271
11.2.2 Extension to Continuously Deformable Molecules ....... 276
11.2.3 Overlapping Distribution Rosenbluth Method ........... 282
11.2.4 Recursive Sampling ................................... 283
11.2.5 Pruned-Enriched Rosenbluth Method .................... 285
Part IV Advanced Techniques ................... 289
12 Long-Range Interactions .......................................... 291
12.1 Ewald Sums .................................................. 292
12.1.1 Point Charges ........................................ 292
12.1.2 Dipolar Particles .................................... 300
12.1.3 Dielectric Constant .................................. 301
12.1.4 Boundary Conditions .................................. 303
12.1.5 Accuracy and Computational Complexity ................ 304
12.2 Fast Multipole Method ....................................... 306
12.3 Particle Mesh Approaches .................................... 310
12.4 Ewald Summation in a Slab Geometry .......................... 316
13 Biased Monte Carlo Schemes ....................................... 321
13.1 Biased Sampling Techniques .................................. 322
13.1.1 Beyond Metropolis .................................... 323
13.1.2 Orientational Bias ................................... 323
13.2 Chain Molecules ............................................. 331
13.2.1 Configurational-Bias Monte Carlo ..................... 331
13.2.2 Lattice Models ....................................... 332
13.2.3 Off-lattice Case ..................................... 336
13.3 Generation of Trial Orientations ............................ 341
13.3.1 Strong Intramolecular Interactions ................... 342
13.3.2 Generation of Branched Molecules ..................... 350
13.4 Fixed Endpoints ............................................. 353
13.4.1 Lattice Models ....................................... 353
13.4.2 Fully Flexible Chain ................................. 355
13.4.3 Strong Intramolecular Interactions ................... 357
13.4.4 Rebridging Monte Carlo ............................... 357
13.5 Beyond Polymers ............................................. 360
13.6 Other Ensembles ............................................. 365
13.6.1 Grand-Canonical Ensemble ............................. 365
13.6.2 Gibbs Ensemble Simulations ........................... 370
13.7 Recoil Growth ............................................... 374
13.7.1 Algorithm ............................................ 376
13.7.2 Justification of the Method .......................... 379
13.8 Questions and Exercises ..................................... 383
14 Accelerating Monte Carlo Sampling ................................ 389
14.1 Parallel Tempering .......................................... 389
14.2 Hybrid Monte Carlo .......................................... 397
14.3 Cluster Moves ............................................... 399
14.3.1 Clusters ............................................. 399
14.3.2 Early Rejection Scheme ............................... 405
15 Tackling Time-Scale Problems ..................................... 409
15.1 Constraints ................................................. 410
15.1.1 Constrained and Unconstrained Averages .............. 415
15.2 On-the-Fly Optimization: Car-Parrinello Approach ............ 421
15.3 Multiple Time Steps ......................................... 424
16 Rare Events ...................................................... 431
16.1 Theoretical Background ...................................... 432
16.2 Bennett-Chandler Approach ................................... 436
16.2.1 Computational Aspects ................................ 438
16.3 Diffusive Barrier Crossing .................................. 443
16.4 Transition Path Ensemble .................................... 450
16.4.1 Path Ensemble ........................................ 451
16.4.2 Monte Carlo Simulations .............................. 454
16.5 Searching for the Saddle Point .............................. 462
17 Dissipative Particle Dynamics .................................... 465
17.1 Description of the Technique ................................ 466
17.1.1 Justification of the Method .......................... 467
17.1.2 Implementation of the Method ......................... 469
17.1.3 DPD and Energy Conservation .......................... 473
17.2 Other Coarse-Grained Techniques ............................. 476
Part V Appendices ............................. 479
A Lagrangian and Hamiltonian ........................................ 481
A.1 Lagrangian .................................................... 483
A.2 Hamiltonian ................................................... 486
A.3 Hamilton Dynamics and Statistical Mechanics ................... 488
A.3.1 Canonical Transformation ................................ 489
A.3.2 Symplectic Condition .................................... 490
A.3.3 Statistical Mechanics ................................... 492
B Non-Hamiltonian Dynamics .......................................... 495
B.1 Theoretical Background ....................................... 495
B.2 Non-Hamiltonian Simulation of the N,V,T Ensemble ............. 497
B.2.1 The Nose-Hoover Algorithm .............................. 498
B.2.2 Nose-Hoover Chains ..................................... 502
B.3 The N,P,T Ensemble ........................................... 505
C Linear Response Theory ............................................ 509
C.1 Static Response ............................................... 509
C.2 Dynamic Response .............................................. 511
C.3 Dissipation ................................................... 513
C.3.1 Electrical Conductivity ................................. 516
C.3.2 Viscosity ............................................... 518
C.4 Elastic Constants ............................................. 519
D Statistical Errors ................................................ 525
D.1 Static Properties: System Size ................................ 525
D.2 Correlation Functions ......................................... 527
D.3 Block Averages ................................................ 529
E Integration Schemes ............................................... 533
E.1 Higher-Order Schemes .......................................... 533
E.2 Nose-Hoover Algorithms ........................................ 535
E.2.1 Canonical Ensemble ...................................... 536
E.2.2 The Isothermal-Isobaric Ensemble ........................ 540
F Saving CPU Time ................................................... 545
F.1 Verlet List ................................................... 545
F.2 Cell Lists .................................................... 550
F.3 Combining the Verlet and Cell Lists ........................... 550
F.4 Efficiency .................................................... 552
G Reference States .................................................. 559
G.1 Grand-Canonical Ensemble Simulation ........................... 559
H Statistical Mechanics of the Gibbs "Ensemble" ..................... 563
H.1 Free Energy of the Gibbs Ensemble ............................. 563
H.1.1 Basic Definitions ....................................... 563
H.1.2 Free Energy Density ..................................... 565
H.2 Chemical Potential in the Gibbs Ensemble ...................... 570
I Overlapping Distribution for Polymers ............................. 573
J Some General Purpose Algorithms ................................... 577
K Small Research Projects ........................................... 581
K.1 Adsorption in Porous Media .................................... 581
K.2 Transport Properties in Liquids ............................... 582
K.3 Diffusion in a Porous Media ................................... 583
K.4 Multiple-Time-Step Integrators ................................ 584
K.5 Thermodynamic Integration ..................................... 585
L Hints for Programming ............................................. 587
Bibliography ........................................................ 589
Author Index ........................................................ 619
Index ............................................................... 628
|