Paternain G.P. Geodesic Flows (Birkhauser, 1999)
Навигация

Выставка новых поступлений  |  Поступления иностранных книг в библиотеки СО РАН : 2003 | 2006 |2008
 
Поступления иностранных книг в библиотеки ННЦ в 2003 г.
Институт математики
Paternain G.P. Geodesic Flows. - Boston et al.: Birkhauser, 1999. - XII, 149 p. - (Progress in mathematics; ISBN 0-8176-4144-0; v. 180). - Геодезические потоки.
Оглавление
  • Geodesic flows are of considerable current interest since they are, perhaps, the most remarkable class of conservative dynamical systems. They provide a unified arena in which one can explore numerous interplays among several fields, including smooth ergodic theory, symplectic and Riemannian geometry, and algebraic topology. The work begins with a concise introduction to the geodesic flow of a complete Riemannian manifold, emphasizing its symplectic properties and culminating with various applications, such as the non-existence of continuous invariant Lagrangian subbundles for manifolds with conjugate points. Subsequent chapters develop the relationship between the exponential growth rate of the average number of geodesic arcs between two points in the manifold and the topological entropy of the geodesic flow. A complete proof of Maсe's formula relating these two quantities is presented. A final chapter explores the link between the topological entropy of the geodesic flow and the homology of the loop space of a manifold. This self-contained monograph will be of interest to graduate students and researchers of dynamical systems and differential geometry. Numerous exercises and examples as well as a comprehensive bibliography and index make the work an excellent self-study resource or useful text for a one-semester course or seminar.
Поступления ин-та Математики | Другие институты  

[О библиотеке | Академгородок | Новости | Выставки | Ресурсы | Библиография | Партнеры | ИнфоЛоция | Поиск]
  © 1997–2024 Отделение ГПНТБ СО РАН  

Документ изменен: Wed Feb 27 14:51:40 2019. Размер: 5,278 bytes.
Посещение N 2703 с 30.03.2004