Massey D.B.Numerical control (Providence, 2003)
Навигация

Выставка новых поступлений  |  Поступления иностранных книг в библиотеки СО РАН : 2003 | 2006 |2008
 
Поступления иностранных книг в библиотеки ННЦ в 2003 г.
Институт математики
Massey D.B.Numerical control over complex analytic singularities. - Providence, 2003. - XII, 268 p.: ill. - (Memoirs of the Amer. math. soc., ISBN 0-8218-3280-8; N 778). - Численная проверка различных топологических и геометрических свойств комплексных аналитических сингулярностей
Оглавление
  • The Milnor number is a powerful invariant of an isolated, complex, affine hypersurface singularity. It provides data about the local, ambient, topological-type of the hypersurface, and the constancy of the Milnor number throughout a family implies that Thom's $a_f$ condition holds and that the local, ambient, topological-type is constant in the family. Much of the usefulness of the Milnor number is due to the fact that it can be effectively calculated in an algebraic manner. The L? cycles and numbers are a generalization of the Milnor number to the setting of complex, affine hypersurface singularities, where the singular set is allowed to be of arbitrary dimension. In this work, we generalize the L? cycles and numbers to the case of hypersurfaces inside arbitrary analytic spaces. We define the L?-Vogel cycles and numbers, and prove that the L?-Vogel numbers control Thom's $a_f$ condition. We also prove a relationship between the Euler characteristic of the Milnor fibre and the L?-Vogel numbers. Moreover, we give examples which show that the L?-Vogel numbers are effectively calculable. In order to define the L?-Vogel cycles and numbers, we require, and include, a great deal of background material on Vogel cycles, analytic intersection theory, and the derived category. Also, to serve as a model case for the L?-Vogel cycles, we recall our earlier work on the L? cycles of an affine hypersurface singularity.
Поступления ин-та Математики | Другие институты  

[О библиотеке | Академгородок | Новости | Выставки | Ресурсы | Библиография | Партнеры | ИнфоЛоция | Поиск]
  © 1997–2024 Отделение ГПНТБ СО РАН  

Документ изменен: Wed Feb 27 14:51:40 2019. Размер: 5,546 bytes.
Посещение N 1343 с 30.03.2004