Meyers M.A. Mechanical behavior of materials (Cambridge; New York, 2009). - ОГЛАВЛЕНИЕ / CONTENTS
Навигация

Архив | Естествознание | Математика | Физика | Химическая промышленность | Науки о жизни
ОбложкаMeyers M.A. Mechanical behavior of materials / M.A.Meyers, K.K.Chawla. - 2nd ed. - Cambridge; New York: Cambridge University Press, 2009. - xxii, 856 p.: ill. - Incl. bibl. ref. - Ind.: p.681-856. - ISBN 978-0-521-86675-0
 

Оглавление / Contents
 
Preface to the First Edition ................................. xvii
Preface to the Second Edition ................................. xxi
A Note to the Reader ........................................ xxiii

Chapter I. Materials: Structure, Properties, and Performance
1.1  Introduction ............................................... 1
1.2  Monolithic, Composite, and Hierarchical Materials .......... 3
1.3  Structure of Materials .................................... 15
     1.3.1  Crystal Structures ................................. 16
     1.3.2  Metals ............................................. 19
     1.3.3  Ceramics ........................................... 25
     1.3.4  Glasses ............................................ 30
     1.3.5  Polymers ........................................... 31
     1.3.6  Liquid Crystals .................................... 39
     1.3.7  Biological Materials and Biomaterials .............. 40
     1.3.8  Porous and Cellular Materials ...................... 44
     1.3.9  Nano- and Microstructure of Biological Materials ... 45
     1.3.10 The Sponge Spicule: An Example of a Biological
            Material ........................................... 56
     1.3.11 Active (or Smart) Materials ........................ 57
     1.3.12 Electronic Materials ............................... 58
     1.3.13 Nanotechnology ..................................... 60
1.4  Strength of Real Materials ................................ 61
     Suggested Reading ......................................... 64
     Exercises ................................................. 65

Chapter 2. I Elasticity and Viscoelasticity .................... 71
2.1  Introduction .............................................. 71
2.2  Longitudinal Stress and Strain ............................ 72
2.3  Strain Energy (or Deformation Energy) Density ............. 77
2.4  Shear Stress and Strain ................................... 80
2.5  Poisson's Ratio ........................................... 83
2.6  More Complex States of Stress ............................. 85
2.7  Graphical Solution of a Biaxial State of Stress: the
     Möhr Circle ............................................... 89
2.8  Pure Shear: Relationship between G and E .................. 95
2.9  Anisotropic Effects ....................................... 96
2.10 Elastic Properties of Polycrystals ....................... 107
2.11 Elastic Properties of Materials .......................... 110
     2.11.1 Elastic Properties of Metals ...................... 111
     2.11.2 Elastic Properties of Ceramics .................... 111
     2.11.3 Elastic Properties of Polymers .................... 116
     2.11.4 Elastic Constants of Unidirectional Fiber
            Reinforced Composite .............................. 117
2.12 Viscoelasticity .......................................... 120
     2.12.1 Storage and Loss Moduli ........................... 124
2.13 Rubber Elasticity ........................................ 126
2.14 Mooney-Rivlin Equation ................................... 131
2.15 Elastic Properties of Biological Materials ............... 134
     2.15.1 Blood Vessels ..................................... 134
     2.15.2 Articular Cartilage ............................... 137
     2.15.3 Mechanical Properties at the Nanometer Level ...... 140
2.16 Elastic Properties of Electronic Materials ............... 143
2.17 Elastic Constants and Bonding ............................ 145
     Suggested Reading ........................................ 155
     Exercises ................................................ 155

Chapter 3. Plasticity ......................................... 161
3.1  Introduction ............................................. 161
3.2  Plastic Deformation in Tension ........................... 163
     3.2.1  Tensile Curve Parameters .......................... 171
     3.2.2  Necking ........................................... 172
     3.2.3  Strain Rate Effects ............................... 176
3.3  Plastic Deformation in Compression Testing ............... 183
3.4  The Bauschunger Effect ................................... 187
3.5  Plastic Deformation of Polymers .......................... 188
     3.5.1  Stress-Strain Curves .............................. 188
     3.5.2  Glassy Polymers ................................... 189
     3.5.3  Semicrystalline Polymers .......................... 190
     3.5.4  Viscous Flow ...................................... 191
     3.5.5  Adiabatic Heating ................................. 192
3.6  Plastic Deformation of Glasses ........................... 193
     3.6.1  Microscopic Deformation Mechanism ................. 195
     3.6.2  Temperature Dependence and Viscosity .............. 197
3.7  Flow, Yield, and Failure Criteria ........................ 199
     3.7.1  Maximum-Stress Criterion (Rankine) ................ 200
     3.7.2  Maximum-Shear-Stress Criterion (Tresca) ........... 200
     3.7.3  Maximum-Distortion-Energy Criterion (von Mises) ... 201
     3.7.4  Graphical Representation and Experimental
            Verification of Rankine, Tresca, and von Mises
            Criteria .......................................... 201
     3.7.5  Failure Criteria for Brittle Materials ............ 205
     3.7.6  Yield Criteria for Ductile Polymers ............... 209
     3.7.7  Failure Criteria for Composite Materials .......... 211
     3.7.8  Yield and Failure Criteria for Other Anisotropic
            Materials ......................................... 213
3.8  Hardness ................................................. 214
     3.8.1  Macroindentation Tests ............................ 216
     3.8.2  Microindentation Tests ............................ 221
     3.8.3  Nanoindentation ................................... 225
3.9  Formability: Important Parameters ........................ 229
     3.9.1  Plastic Anisotropy ................................ 231
     3.9.2  Punch-Stretch Tests and Forming-Limit Curves
            (or Keeler-Goodwin Diagrams) ...................... 232
3.10 Muscle Force ............................................. 237
3.11 Mechanical Properties of Some Biological Materials ....... 241
     Suggested Reading ........................................ 245
     Exercises ................................................ 246

Chapter 4. Imperfections: Point and Line Defects .............. 251
4.1  Introduction ............................................. 251
4.2  Theoretical Shear Strength ............................... 252
4.3  Atomic or Electronic Point Defects ....................... 254
     4.3.1  Equilibrium Concentration of Point Defects ........ 256
     4.3.2  Production of Point Defects ....................... 259
     4.3.3  Effect of Point Defects on Mechanical Properties .. 260
     4.3.4  Radiation Damage .................................. 261
     4.3.5  Ion Implantation .................................. 265
4.4  Line Defects ............................................. 266
     4.4.1  Experimental Observation of Dislocations .......... 270
     4.4.2  Behavior of Dislocations .......................... 273
     4.4.3  Stress Field Around Dislocations .................. 275
     4.4.4  Energy of Dislocations ............................ 278
     4.4.5  Force Required to Bow a Dislocation ............... 282
     4.4.6  Dislocations in Various Structures ................ 284
     4.4.7  Dislocations in Ceramics .......................... 293
     4.4.8  Sources of Dislocations ........................... 298
     4.4.9  Dislocation Pileups ............................... 302
     4.4.10 Intersection of Dislocations ...................... 304
     4.4.11 Deformation Produced by Motion of Dislocations
            (Orowan's Equation) ............................... 306
     4.4.12 The Peierls-Nabarro Stress ........................ 309
     4.4.13 The Movement of Dislocations: Temperature and
            Strain Rate Effects ............................... 310
     4.4.14 Dislocations in Electronic Materials .............. 313
     Suggested Reading ........................................ 316
     Exercises ................................................ 317

Chapter 5. Imperfections: Interfacial and Volumetric
Defects ....................................................... 321
5.1  Introduction ............................................. 321
5.2  Grain Boundaries ......................................... 321
     5.2.1  Tilt and Twist Boundaries ......................... 326
     5.2.2  Energy of a Grain Boundary ........................ 328
     5.2.3  Variation of Grain-Boundary Energy with
            Misorientation .................................... 330
     5.2.4  Coincidence Site Lattice (CSL) Boundaries ......... 332
     5.2.5  Grain-Boundary Triple Junctions ................... 334
     5.2.6  Grain-Boundary Dislocations and Ledges ............ 334
     5.2.7  Grain Boundaries as a Packing of Polyhedral
            Units ............................................. 336
5.3  Twinning and Twin Boundaries ............................. 336
     5.3.1  Crystallography and Morphology .................... 337
     5.3.2  Mechanical Effects ................................ 341
5.4  Grain Boundaries in Plastic Deformation (Grain-size
     Strengthening) ........................................... 345
     5.4.1  Hall-Petch Theory ................................. 348
     5.4.2  Cottrell's Theory ................................. 349
     5.4.3  Li's Theory ....................................... 350
     5.4.4  Meyers-Ashworth Theory ............................ 351
5.5  Other Internal Obstacles ................................. 353
5.6  Nanocrystalline Materials ................................ 355
5.7  Volumetric or Tridimensional Defects ..................... 358
5.8  Imperfections in Polymers ................................ 361
     Suggested Reading ........................................ 364
     Exercises ................................................ 364

Chapter 6. Geometry of Deformation and Work-Hardening ......... 369
6.1  Introduction ............................................. 369
6.2  Geometry of Deformation .................................. 373
     6.2.1  Stereographic Projections ......................... 373
     6.2.2  Stress Required for Slip .......................... 374
     6.2.3  Shear Deformation ................................. 380
     6.2.4  Slip in Systems and Work-Hardening ................ 381
     6.2.5  Independent Slip Systems in Polycrystals .......... 384
6.3  Work-Hardening in Polycrystals ........................... 384
     6.3.1  Taylor's Theory ................................... 386
     6.3.2  Seeger's Theory ................................... 388
     6.3.3  Kuhlmann-Wilsdorfs Theory ......................... 388
6.4  Softening Mechanisms ..................................... 392
6.5  Texture Strengthening .................................... 395
     Suggested Reading ........................................ 399
     Exercises ................................................ 399

Chapter 7. Fracture: Macroscopic Aspects ...................... 404
7.1  Introduction ............................................. 404
7.2  Theorectical Tensile Strength ............................ 406
7.3  Stress Concentration and Griffith Criterion of
     Fracture ................................................. 409
     7.3.1  Stress Concentrations ............................. 409
     7.3.2  Stress Concentration Factor ....................... 409
7.4  Griffith Criterion ....................................... 416
7.5  Crack Propagation with Plasticity ........................ 419
7.6  Linear Elastic Fracture Mechanics ........................ 421
     7.6.1  Fracture Toughness ................................ 422
     7.6.2  Hypotheses of LEFM ................................ 423
     7.6.3  Crack-Tip Separation Modes ........................ 423
     7.6.4  Stress Field in an Isotropic Material in the
            Vicinity of a Crack Tip ........................... 424
     7.6.5  Details of the Crack-Tip Stress Field in Mode I ... 425
     7.6.6  Plastic-Zone Size Correction ...................... 428
     7.6.7  Variation in Fracture Toughness with Thickness .... 431
7.7  Fracture Toughness Parameters ............................ 434
     7.7.1  Crack Extension Force G ........................... 434
     7.7.2  Crack Opening Displacement ........................ 437
     7.7.3  J Integral ........................................ 440
     7.7.4  R Curve ........................................... 443
     7.7.5  Relationships among Different Fracture Toughness
            Parameters ........................................ 444
7.8  Importance of Kic in Practice ............................ 445
7.9  Post-Yield Fracture Mechanics ............................ 448
7.10 Statistical Analysis of Failure Strength ................. 449
     Appendix: Stress Singularity at Crack Tip ................ 458
     Suggested Reading ........................................ 460
     Exercises ................................................ 460

Chapter 8. Fracture: Microscopic Aspects ...................... 466
8.1  Introduction ............................................. 466
8.2  Fracture in Metals ....................................... 468
     8.2.1  Crack Nucleation .................................. 468
     8.2.2  Ductile Fracture .................................. 469
     8.2.3  Brittle, or Cleavage, Fracture .................... 480
8.3  Fracture in Ceramics ..................................... 487
     8.3.1  Microstructural Aspects ........................... 487
     8.3.2  Effect of Grain Size on Strength of Ceramics ...... 494
     8.3.3  Fracture of Ceramics in Tension ................... 496
     8.3.4  Fracture in Ceramics Under Compression ............ 499
     8.3.5  Thermally Induced Fracture in Ceramics ............ 504
8.4  Fracture in Polymers ..................................... 507
     8.4.1  Brittle Fracture .................................. 507
     8.4.2  Crazing and Shear Yielding ........................ 508
     8.4.3  Fracture in Semicrystalline and Crystalline
            Polymers .......................................... 512
     8.4.4  Toughness of Polymers ............................. 513
8.5  Fracture and Toughness of Biological Materials ........... 517
8.6  Fracture Mechanism Maps .................................. 521
     Suggested Reading ........................................ 521
     Exercises ................................................ 521

Chapter 9. Fracture Testing ................................... 525
9.1  Introduction ............................................. 525
9.2  Impact Testing ........................................... 525
     9.2.1  Charpy Impact Test ................................ 526
     9.2.2  Drop-Weight Test .................................. 529
     9.2.3  Instrumented Charpy Impact Test ................... 531
9.3  Plane-Strain Fracture Toughness Test ..................... 532
9.4  Crack Opening Displacement Testing ....................... 537
9.5  J-Integral Testing ....................................... 538
9.6  Flexure Test ............................................. 540
     9.6.1  Three-Point Bend Test ............................. 541
     9.6.2  Four-Point Bending ................................ 542
     9.6.3  Interlaminar Shear Strength Test .................. 543
9.7  Fracture Toughness Testing of Brittle Materials .......... 545
     9.7.1  Chevron Notch Test ................................ 547
     9.7.2  Indentation Methods for Determining Toughness ..... 549
9.8  Adhesion of Thin Films to Substrates ..................... 552
     Suggested Reading ........................................ 553
     Exercises ................................................ 553

Chapter 10 Solid Solution, Precipitation, and Dispersion
Strengthening ................................................. 558
10.1 Introduction ............................................. 558
10.2 Solid-Solution Strengthening ............................. 559
     10.2.1 Elastic Interaction ............................... 560
     10.2.2 Other Interactions ................................ 564
10.3 Mechanical Effects Associated with Solid Solutions ....... 564
     10.3.1 Weil-Defined Yield Point in the Stress-Strain
            Curves ............................................ 565
     10.3.2 Plateau in the Stress-Strain Curve and Lьders
            Band .............................................. 566
     10.3.3 Strain Aging ...................................... 567
     10.3.4 Serrated Stress-Strain Curve ...................... 568
     10.3.5 Snoek Effect ...................................... 569
     10.3.6 Blue Brittleness .................................. 570
10.4 Precipitation- and Dispersion-Hardening .................. 571
10.5 Dislocation-Precipitate Interaction ...................... 579
10.6 Precipitation in Microalloyed Steels ..................... 585
10.7 Dual-Phase Steels ........................................ 590
     Suggested Reading ........................................ 590
     Exercises ................................................ 591

Chapter 11. Martensitic Transformation ........................ 594
11.1 Introduction ............................................. 594
11.2 Structures and Morphologies of Martensite ................ 594
11.3 Strength of Martensite ................................... 600
11.4 Mechanical Effects ....................................... 603
11.5 Shape-Memory Effect ...................................... 608
     11.5.1 Shape-Memory Effect in Polymers ................... 614
11.6 Martensitic Transformation in Ceramics ................... 614
     Suggested Reading ........................................ 618
     Exercises ................................................ 619

Chapter 12 Special Materials: Intermetallics and Foams ........ 621
12.1 Introduction ............................................. 621
12.2 Suicides ................................................. 621
12.3 Ordered Intermetallics ................................... 622
     12.3.1 Dislocation Structures in Ordered Intermetallics .. 624
     12.3.2 Effect of Ordering on Mechanical Properties ....... 628
     12.3.3 Ductility of Intermetallics ....................... 634
12.4 Cellular Materials ....................................... 639
     12.4.1 Structure ......................................... 639
     12.4.2 Modeling of the Mechanical Response ............... 639
     12.4.3 Comparison of Predictions and Experimental
            Results ........................................... 645
     12.4.4 Syntactic Foam .................................... 645
     12.4.5 Plastic Behavior of Porous Materials .............. 646
     Suggested Reading ........................................ 650
     Exercises ................................................ 650

Chapter 13. Creep and Superplasticity ......................... 653
13.1 Introduction ............................................. 653
13.2 Correlation and Extrapolation Methods .................... 659
13.3 Fundamental Mechanisms Responsible for Creep ............. 665
13.4 Diffusion Creep .......................................... 666
13.5 Dislocation (or Power Law) Creep ......................... 670
13.6 Dislocation Glide ........................................ 673
13.7 Grain-Boundary Sliding ................................... 675
13.8 Deformation-Mechanism (Weertman-Ashbyj Maps .............. 676
13.9 Creep-Induced Fracture ................................... 678
13.10 Heat-Resistant Materials ................................ 681
13.11 Creep in Polymers ....................................... 688
13.12 Diffusion-Related Phenomena in Electronic Materials ..... 695
13.13 Superplasticity ......................................... 697
     Suggested Reading ........................................ 705
     Exercises ................................................ 705

Chapter 14. Fatigue ........................................... 713
14.1 Introduction ............................................. 713
14.2 Fatigue Parameters and S-N (Wöhler) Curves ............... 714
14.3 Fatigue Strength or Fatigue Life ......................... 716
14.4 Effect of Mean Stress on Fatigue Life .................... 719
14.5 Effect of Frequency ...................................... 721
14.6 Cumulative Damage and Life Exhaustion .................... 721
14.7 Mechanisms of Fatigue .................................... 725
     14.7.1 Fatigue Crack Nucleation .......................... 725
     14.7.2 Fatigue Crack Propagation ......................... 730
14.8 Linear Elastic Fracture Mechanics Applied to Fatigue ..... 735
     14.8.1  Fatigue of Biomaterials .......................... 744
14.9 Hysteretic Heating in Fatigue ............................ 746
14.10 Environmental Effects in Fatigue ........................ 748
14.11 Fatigue Crack Closure ................................... 748
14.12 The Two-Parameter Approach .............................. 749
14.13 The Short-Crack Problem in Fatigue ...................... 750
14.14 Fatigue Testing ......................................... 751
     14.14.1 Conventional Fatigue Tests ....................... 751
     14.14.2 Rotating Bending Machine ......................... 751
     14.14.3 Statistical Analysis of S-N Curves ............... 753
     14.14.4 Nonconventional Fatigue Testing .................. 753
     14.14.5 Servohydraulic Machines .......................... 755
     14.14.6 Low-Cycle Fatigue Tests .......................... 756
     14.14.7 Fatigue Crack Propagation Testing ................ 757
     Suggested Reading ........................................ 758
     Exercises ................................................ 759

Chapter 15. Composite Materials ............................... 765
15.1 Introduction ............................................. 765
15.2 Types of Composites ...................................... 765
15.3 Important Reinforcements and Matrix Materials ............ 767
     15.3.1 Microstructural Aspects and Importance of the
            Matrix ............................................ 769
15.4 Interfaces in Composites ................................. 770
     15.4.1 Crystallographic Nature of the Fiber-Matrix
            Interface ......................................... 771
     15.4.2 Interfacial Bonding in Composites ................. 772
     15.4.3 Interfacial Interactions .......................... 773
15.5 Properties of Composites ................................. 774
     15.5.1 Density and Heat Capacity ......................... 775
     15.5.2 Elastic Moduli .................................... 775
     15.5.3 Strength .......................................... 780
     15.5.4 Anisotropic Nature of Fiber Reinforced
            Composites ........................................ 783
     15.5.5 Aging Response of Matrix in MMCs .................. 785
     15.5.6 Toughness ......................................... 785
15.6 Load Transfer from Matrix to Fiber ....................... 788
     15.6.1 Fiber and Matrix Elastic .......................... 789
     15.6.2 Fiber Elastic and Matrix Plastic .................. 792
15.7 Fracture in Composites ................................... 794
     15.7.1 Single and Multiple Fracture ...................... 795
     15.7.2 Failure Modes in Composites ....................... 796
15.8 Some Fundamental Characteristics of Composites ........... 799
     15.8.1  Heterogeneity .................................... 799
     15.8.2 Anisotropy ........................................ 799
     15.8.3 Shear Coupling .................................... 801
     15.8.4 Statistical Variation in Strength ................. 802
15.9 Functionally Graded Materials ............................ 803
15.10 Applications ............................................ 803
     15.10.1 Aerospace Applications ........................... 803
     15.10.2 Nonaerospace Applications ........................ 804
15.11 Laminated Composites .................................... 806
     Suggested Reading ........................................ 809
     Exercises ................................................ 810

Chapter 16. Environmental Effects ............................. 815
16.1 Introduction ............................................. 815
16.2 Electrochemical Nature of Corrosion in Metals ............ 815
     16.2.1 Galvanic Corrosion ................................ 816
     16.2.2 Uniform Corrosion ................................. 817
     16.2.3 Crevice corrosion ................................. 817
     16.2.4 Pitting Corrosion ................................. 818
     16.2.5 Intergranular Corrosion ........................... 818
     16.2.6 Selective leaching ................................ 819
     16.2.7 Erosion-Corrosion ................................. 819
     16.2.8 Radiation Damage .................................. 819
     16.2.9 Stress Corrosion .................................. 819
16.3 Oxidation of metals ...................................... 819
16.4 Environmentally Assisted Fracture in Metals .............. 820
     16.4.1 Stress Corrosion Cracking (SCC) ................... 820
     16.4.2 Hydrogen Damage in Metals ......................... 824
     16.4.3 Liquid and Solid Metal Embrittlement .............. 830
16.5 Environmental Effects in Polymers ........................ 831
     16.5.1 Chemical or Solvent Attack ........................ 832
     16.5.2 Swelling .......................................... 832
     16.5.3 Oxidation ......................................... 833
     16.5.4 Radiation Damage .................................. 834
     16.5.5 Environmental Crazing ............................. 835
     16.5.6 Alleviating the Environmental Damage in Polymers .. 836
16.6 Environmental Effects in Ceramics ........................ 836
     16.6.1 Oxidation of Ceramics ............................. 839
     Suggested Reading ........................................ 840
     Exercises ................................................ 840

Appendixes .................................................... 843
Index ......................................................... 851


Архив | Естествознание | Математика | Физика | Химическая промышленность | Науки о жизни
 

[О библиотеке | Академгородок | Новости | Выставки | Ресурсы | Библиография | Партнеры | ИнфоЛоция | Поиск]
  © 1997–2024 Отделение ГПНТБ СО РАН  

Документ изменен: Wed Feb 27 14:31:26 2019. Размер: 30,804 bytes.
Посещение N 1417 c 13.10.2015