Kirkup L. An introduction to uncertainty in measurement using the GUM (guide to the expression of uncertainty in measurement) (Cambridge; New York, 2006). - ОГЛАВЛЕНИЕ / CONTENTS
Навигация

Архив | Естествознание | Математика | Физика | Химическая промышленность | Науки о жизни
ОбложкаKirkup L. An introduction to uncertainty in measurement using the GUM (guide to the expression of uncertainty in measurement) / L.Kirkup, R.B.Frenkel. - Cambridge; New York: Cambridge University Press, 2006. - xiii, 233 p.: ill. - Ref.: p.226-228. - Ind.: p.229-233. - ISBN 978-0-521-60579-3
 

Оглавление / Contents
 
Preface ........................................................ xi

1  The importance of uncertainty in science and technology ...... 1
   1.1  Measurement matters ..................................... 3
   1.2  Review ................................................. 13
2  Measurement fundamentals .................................... 15
   2.1  The system of units of measurement ..................... 15
   2.2  Scientific and engineering notations ................... 21
   2.3  Rounding and significant figures ....................... 22
   2.4  Another way of expressing proportional uncertainty ..... 26
   2.5  Review ................................................. 26
3  Terms used in measurement ................................... 27
   3.1  Measurement and related terms .......................... 27
   3.2  Review ................................................. 34
4  Introduction to uncertainty in measurement .................. 35
   4.1  Measurement and error .................................. 35
   4.2  Uncertainty is a parameter that characterises the 
        dispersion of values ................................... 43
   4.3  Standard deviation as a basic measure of uncertainty ... 45
   4.4  The uncertainty in the estimate of uncertainty ......... 49
   4.5  Combining standard uncertainties ....................... 50
   4.6  Review ................................................. 52
5  Some statistical concepts ................................... 53
   5.1  Sampling from a population ............................. 53
   5.2  The least-squares model and least-squares fitting ...... 59
   5.3  Covariance and correlation ............................. 77
   5.4  Review ................................................. 82
6  Systematic errors ........................................... 83
   6.1  Systematic error revealed by specific information ...... 83
   6.2  Systematic error revealed by changed conditions ........ 92
   6.3  Review ................................................. 96
7  Calculation of uncertainties ................................ 97
   7.1  The measurand model and propagation of uncertainties
        from inputs to measurand ............................... 97
   7.2  Correlated inputs ..................................... 109
   7.3  Review ................................................ 125
8  Probability density, the Gaussian distribution and 
   central limit theorem ...................................... 126
   8.1  Distribution of scores when tossing coins or dice ..... 126
   8.2  General properties of probability density ............. 128
   8.3  The uniform or rectangular distribution ............... 133
   8.4  The Gaussian distribution ............................. 135
   8.5  Experimentally observed non-Gaussian distributions .... 139
   8.6  The central limit theorem ............................. 143
   8.7  Review ................................................ 153
9  Sampling a Gaussian distribution ........................... 154
   9.1  Sampling the distribution of the mean of a sample 
        of size n, from a Gaussian population ................. 154
   9.2  Sampling the distribution of the variance of 
        a sample of size n, from a Gaussian population ........ 155
   9.3  Sampling the distribution of the standard deviation 
        of a sample of size n, from a Gaussian population ..... 159
   9.4  Review ................................................ 161
10 The t-distribution and Welch-Satterthwaite formula ......... 162
   10.1 The coverage interval for a Gaussian distribution ..... 163
   10.2 The coverage interval using a t-distribution .......... 169
   10.3 The Welch-Satterthwaite formula ....................... 174
   10.4 Review ................................................ 185
11 Case studies in measurement uncertainty .................... 191
   11.1 Reporting measurement results ......................... 191
   11.2 Determination of the coefficient of static friction
        for glass on glass .................................... 192
   11.3 A crater-formation experiment ......................... 197
   11.4 Determination of the density of steel ................. 203
   11.5 The rate of evaporation of water from an open
        container ............................................. 210
   11.6 Review ................................................ 217
Appendix A  Solutions to exercises ............................ 218
Appendix В  95% Coverage factors, k, as a function of the 
   number of degrees of freedom, ν ............................ 222
Appendix С  Further discussion following from the Welch-
   Satterthwaite formula ...................................... 223

References .................................................... 226
Index ......................................................... 229


Архив | Естествознание | Математика | Физика | Химическая промышленность | Науки о жизни
 

[О библиотеке | Академгородок | Новости | Выставки | Ресурсы | Библиография | Партнеры | ИнфоЛоция | Поиск]
  © 1997–2024 Отделение ГПНТБ СО РАН  

Документ изменен: Wed Feb 27 14:31:24 2019. Размер: 8,815 bytes.
Посещение N 1307 c 13.10.2015