Навигация

Архив выставки новых поступлений | Отечественные поступления | Иностранные поступления | Сиглы
ОбложкаComputational social science: discovery and prediction / ed. by R.M.Alvarez. - New York: Cambridge University Press, 2016. - x, 327 p.: ill. - ISBN 978-1-107-10788-5
Шифр: 01

 

Место хранения: 01 | ГПНТБ СО РАН | Новосибирск

Оглавление / Contents
 
Preface ....................................................... vii
   Gary King

Introduction .................................................... 1
   R. Michael Alvarez

PART 1: COMPUTATIONAL SOCIAL SCIENCE TOOLS
1  The Application of Big Data in Surveys to the Study of
   Elections, Public Opinion, and Representation ............... 27
   Christopher Warshaw
2  Navigating the Local Modes of Big Data: The Case of Topic 
   Models ...................................................... 51
   Margaret E. Roberts, Brandon M. Stewart, and Dustin 
   Tingley
3  Generating Political Event Data in Near Real Time: 
   Opportunities and Challenges ................................ 98
   John Beieler, Patrick T. Brandt, Andrew Halterman, Philip A. 
   Schrodt, and Erin M. Simpson
4  Network Structure and Social Outcomes: Network Analysis 
   for Social Science ......................................... 121
   Betsy Sinclair
5  Ideological Salience in Multiple Dimensions ................ 140
   Peter Foley
6  Random Forests and Fuzzy Forests in Biomedical Research .... 168
   Daniel Conn and Christina M. Ramirez
 

PART 2: COMPUTATIONAL SOCIAL SCIENCE APPLICATIONS
7  Big Data, Social Media, and Protest: Foundations for
   a Research Agenda .......................................... 199
   Joshua A. Tucker, Jonathan Nagler, Megan MacDuffee 
   Metzger, Pablo Barberá, Duncan Penfold-Brown, and 
   Richard Bonneau
8  Measuring Representational Style in the House: The Tea 
   Party, Obama, and Legislators' Changing Expressed 
   Priorities ................................................. 225
   Justin Grimmer
9  Using Social Marketing and Data Science to Make Government 
   Smarter .................................................... 246
   Brian Griepentrog, Sean Marsh, Sidney Carl Turner, and 
   Sarah Evans
10 Using Machine Learning Algorithms to Detect Election 
   Fraud ...................................................... 266
   Ines Levin, Julia Pomares, and R. Michael Alvarez
11 Centralized Analysis of Local Data, with Dollars and 
   Lives on the Line: Lessons from the Home Radon Experience .. 295
   Phillip N. Price and Andrew Gelman
Conclusion: Computational Social Science: Toward
   a Collaborative Future ..................................... 307
   Hanna Wallach

Index ......................................................... 317


Архив выставки новых поступлений | Отечественные поступления | Иностранные поступления | Сиглы
 

[О библиотеке | Академгородок | Новости | Выставки | Ресурсы | Библиография | Партнеры | ИнфоЛоция | Поиск]
  © 1997–2025 Отделение ГПНТБ СО РАН  

Документ изменен: Wed Feb 27 14:30:30 2019. Размер: 4,660 bytes.
Посещение N 1021 c 29.01.2019