 | Higher-order growth curves and mixture modeling with Mplus: a practical guide / K.A.S.Wickrama, T.K.Lee, C.W.O'Neal, F.O.Lorenz. - London: Routledge, 2016. - xviii, 326 p.: ill. - Incl. bibl. ref. - Auth. ind.: p.:320-322. - Sub. ind.: p.323-326.
- ISBN 978-1-138-92514-4 Шифр: 01
|
Preface ........................................................ xv
About the Authors ............................................. xix
PART I. Introduction ............................................ 1
1 Introduction ................................................. 3
A Layout of Incrementally-Related SEMs: An Organizing Guide .. 3
Illustrative Example 1.1: Examining Alternative Growth
Curve Models ............................................. 4
Adolescents' Internalizing Symptoms (IS) Trajectories ........ 9
Datasets used in Illustrations ............................. 9
Measures .................................................. 10
2 Latent Growth Curves ........................................ 13
Introduction ................................................ 13
Growth Curve Modeling ....................................... 13
Conventional Latent Growth Curve Models (LGCM) ............ 14
Illustrative Example 2.1: Examining the Longitudinal
Covariance Pattern of Indicators ........................ 19
Estimating an Unconditional Linear Latent Growth Curve
Model (LGCM) Using Mplus ................................ 20
Illustrative Example 2.2: Estimating a Linear Latent
Growth Curve Model (LGCM) ............................... 20
Curvilinear Growth Curve Modeling (i.e., A Quadratic
Growth Curve Model) ....................................... 20
Illustrative Example 2.3: Estimating a Quadratic Latent
Growth Curve Model (LGCM) ............................... 24
Model Fit Indices ......................................... 27
Comparing Nested Models ................................... 30
Illustrative Example 2.4: Nested Model Comparison Between
Linear and Quadratic Models ............................. 30
Illustrative Example 2.5: Nested Model Comparison Between
Models with and Without Correlated Errors ............... 31
Illustrative Example 2.6: Non-nested Model Comparison
Between Linear and Piecewise Models ..................... 31
Adding Covariates to an Unconditional Model ................. 33
Illustrative Example 2.7: Adding a Predictor and Outcome
to a Linear LGCM ........................................ 35
Illustrative Example 2.8: Adding a Predictor and Outcome
to a Quadratic LGCM ..................................... 36
Methodological Concerns in Longitudinal Analysis:
Why Growth Curves? ........................................ 38
The Need to Preserve the Continuity of Change ............. 38
The Need to Investigate Different Growth Parameters ....... 39
The Need to Incorporate Growth Parameters as Either
Predictors or Outcomes in the Same Model ................ 39
The Need to Incorporate Time- Varying Predictors .......... 40
Limitations ................................................. 40
Beyond Latent Growth Curve Modeling ......................... 41
Revisiting the Layout of Models: Figures 1.1,1-2, and 1.3 ... 41
First-Order Structural Equation Models .................... 42
Second-Order Grotvth Curve Modeling ....................... 42
Growth Mixture ModeHng .................................... 42
Chapter 2 Exercises ......................................... 43
3 Longitudinal Confirmatory Factor Analysis and
Curve-of-Factors Growth Curve Models ........................ 47
Introduction ................................................ 47
Confirmatory Factor Analysis (CFA) (Step One) ............... 47
Specification of a Simple CFA ............................. 48
CFA Model Identification .................................. 50
Scale Setting in a CFA .................................... 50
Longitudinal Confirmatory Factor Analysis (LCFA):
Model Specification (Step Two) ............................ 51
A Second-Order Growth Curve: A Curve-of-Factors
Model (Step Three) ........................................ 51
Specification of a Curve-of-Factors Model (CFM) ........... 51
Why Analyze a Curve-of-Factors Model? Improvements
Over a Conventional LGCM .................................. 54
Chapter 3 Exercises ......................................... 57
4 Estimating Curve-of-Factors Growth Curve Models ............. 59
Introduction ................................................ 59
Steps for Estimating a Curve-of-Factors Model (CFM) ......... 59
Investigating the Longitudinal Correlation Patterns of
Subdomain indicators (Step One) ......................... 60
Illustrative Example 4.1: Examining the Longitudinal
Correlation Patterns Among Indicators ................... 60
Performing an Unconstrained Longitudinal Confirmatory
Factor Analysis (LCFA) (Step Two) ....................... 62
Illustrative Example 4.2; Longitudinal Confirmatory
Factor Analysis (LCFA) Using Mplus ...................... 62
Measurement Invariance of the LCFA Model (Step Three) ..... 70
Illustrative Example 4.3: Systematic Incremental Testing
Sequences for Assessing Measurement Invariance .......... 71
Illustrative Example 4.4: Longitudinal Confirmatory
Factor Analysis (LCFA) with "Trait" Factors (IT model) .. 81
Estimating a Second-Order Growth Curve:
A Curve-of-Factors Model (CFM) (Step Four) .............. 84
Illustrative Example 4.5: Estimating a Curve-of-Factors
Model (CFM) ............................................. 85
Scale Setting Approaches and Second-Order Growth Model
Parameters (Curve-of-Factors Model, CFM) .................. 90
Marker Variable Approach .................................. 90
Illustrative Example 4.6: Using the Marker Variable
Approach for CFA Scale Setting .......................... 90
Fixed Factor Approach ..................................... 94
Illustrative Example 4.7: Using the Fixed Factor Scale
Setting Approach in a CFA ............................... 94
Effect Coding Approach .................................... 96
Illustrative Example 4.8: Using the Effect Coding Scale
Setting Approach in a CFA ............................... 98
Adding Covariates to a Curve-of-Factors Model (CFM) ........ 100
Time-Invariant Covariate (TIC) Model ..................... 100
Illustrative Example 4.9: Adding a Time-Invariant
Covariate (TIC) as a CFM Predictor ..................... 102
Illustrative Example 4.10: Adding a Multiple-Indicator
Latent Factor as a CFM Predictor ....................... 104
Illustrative Example 4.11: Predicting Both Second-Order
Growth Parameters and First-Order Latent Factors ....... 106
Illustrative Example 4.12: Predicting Distal Outcomes of
Second-order Growth Factors ............................ 108
Time-Varying Covariate (TVC) Model ....................... 110
Illustrative Example 4.13: Incorporating a Time-Varying
Covariate as a Direct Predictor of Manifest
Indicators ............................................. 111
Illustrative Example 4.14: Incorporating a Time-Varying
Covariate as a Parallel Process ........................ 115
Chapter 4 Exercises ........................................ 118
5 Extending a Parallel Process Latent Growth Curve
Model (PPM) to a Factor-of-Curves Model (PCM) .............. 122
Introduction ............................................... 122
Parallel Process Latent Growth Curve Model (PPM) ......... 122
Estimating a Parallel Process Model (PPM) ................ 124
Correlation of Measurement Errors in a PPM ............... 126
Influence of Growth Factors of One Subdomain on the
Growth Factors of Other Suhdomains ..................... 128
Modeling Sequentially Contingent Processes over Time ..... 132
Extending a Parallel Process Latent Growth Curve Model
(PPM) to a Factor-of-Curves Growth Curve Model (FCM) ..... 134
Second-Order Growth Factors ................................ 136
Chapter 5 Exercises ........................................ 141
6 Estimating a Factor-of-Curves Model (FCM) and Adding
Covariates ................................................. 142
Introduction ............................................... 142
Estimating a Factor-of-Curves Model (FCM) .................. 142
Investigating the Longitudinal Correlation Patterns
Among Repeated Measures of Each Suhdotnain (Step One) .... 143
Illustrative Example 6.1: Investigating the
Longitudinal Correlation Patterns Among Repeated
Measures of Each Subdomain ............................. 144
Estimating a Parallel Process Growth Curve Model (PPM)
(Step Two) .............................................. 144
Illustrative Example 6.2: Estimating a Parallel Process
Growth Curve Model (PPM) ............................... 144
Estimating a Factor-of-Curves Model (FCM) (Step Three) ... 146
Illustrative Example 6.3; Estimating a Factor-of-Curves
Model (FCM) ............................................ 148
Illustrative Example 6.4; Comparing Two Competing Models
Empirically ............................................ 152
Estimating a Conditional FCM (Step Four) ................. 153
Illustrative Example 6.5; Adding Time-Invariant
Covariates (TIC) to a FCM .............................. 154
Illustrative Example 6.6; Incorporating a Latent Distal
Outcome into a FCM ..................................... 156
Illustrative Example 6.7; Incorporating a Time-Varying
Covariate (TVC) as a Direct Predictor .................. 160
Illustrative Example 6.8; Incorporating a Time-Varying
Predictor as a Parallel Process ........................ 164
A Multiple-Group FCM (Multi-Group Longitudmal Modeling) .... 165
Illustrative Example 6.9; Estimating a FCM for Multiple
Groups ................................................... 167
Multivariate FCM ........................................... 172
Illustrative Example 6.10: Estimating a Multivariate FCM ... 174
Model Selection; Factor-of-Curves vs. Curve-of-Factors ..... 177
Illustrative Example 6.11; Empirically Comparing CFM and
FCM Approaches ........................................... 179
Combining a CFM and a FCM; A Factor-of-Curves-of-Factors
(FCF) Model .............................................. 182
Illustrative Example 6.12; Estimating a Factor-of-Curves-
of-Factors (FCF) Model ................................... 183
Chapter 6 Exercises ........................................ 185
PART 2. Growth Mixture Modeling ............................... 189
7 An Introduction to Growth Mixture Models (GMMs) ........... 191
Introduction ............................................... 191
A Conventional Latent Growth Curve Model (LGCM) ............ 192
Potential Heterogeneity in Individual Trajectories ......... 192
Growth Mixture Modehng (GMM) ............................... 195
Latent Class Growth Analysis (LCGA); A Simplified GMM ...... 196
Specifying a Growth Mixture Model (GMM) .................... 197
Specifying Trajectory Classes: Class-Specific Equations .. 199
Specifying a Latent Class Growth Analysis (LCGA) ......... 199
Building A Growth Mixture Model (GMM) Using Mplus .......... 201
Specify a Traditional Growth Curve Model (LGCM) (Step
One) ................................................... 201
Estimating a Latent Class Growth Analysis (LCGA) (Step
Two) ................................................... 202
Illustrative Example 7.1: Mplus Syntax for a Latent
Class Growth Analysis (LCGA) ........................... 204
Specifying a Growth Mixture Model (GMM) (Step Three) ..... 204
Illustrative Example 7.2: Mplus Syntax for a
Growth Mixture Model (GMM) ............................. 205
Addressing Estimation Problems (Step Four) ............... 206
Illustrative Example 7.3: A Non-Normal Distribution ...... 207
Selecting the Optimal Class Model (Enumeration Indices)
(Step Five) ............................................ 213
Illustrative Example 7.4: Identifying the Optimal Model .. 216
Summary of a Model Building Strategy ....................... 221
Chapter 7 Exercises ........................................ 223
8 Estimating a Conditional Growth Mixture Model (GMM) ........ 227
Introduction ............................................... 227
Growth Mixture Models: Predictors and Distal Outcomes ...... 228
The One-Step Approach to Incorporating Covariates into
a GMM .................................................... 229
Predictors of Latent Classes (Multinomial Regression) .... 229
Illustrative Example 8.1: Incorporating a Time-Invariant
Predictor into a GMM ................................... 230
Predictors of Latent Growth Factors Within Classes ....... 230
Illustrative Example 8.2: Adding Within-Class Effects
of Predictors to a GMM ................................. 232
Adding Distal Outcomes of Latent Classes (Categorical
and Continuous) ........................................ 234
Illustrative Example 8.3: Incorporating a Binary Distal
Outcome into a GMM ..................................... 234
Illustrative Example 8.4: Incorporating a Continuous
Distal Outcome into a GMM .............................. 236
Uncertainty of Latent Class Membership With the Addition
of Covariates .......................................... 237
The Three-Step Approach: The "Manual" Method ............... 238
Illustrative Example 8.5: The Three-Step Procedure for
Incorporating Predictor(s) ............................. 239
Illustrative Example 8.6: The Three-Step Procedure for
Incorporating Distal Outcome(s) ........................ 243
AUXILIARY Option for the Three-Step Approach ............... 247
Illustrative Example 8.7: Utilizing the Auxiliary Option
with the 3-Step Approach ............................... 247
Illustrative Example 8.8: Utilizing the Auxiliary Option
with "Lanza Commands" .................................. 249
Chapter 8 Exercises ........................................ 253
9 Second-Order Growth Mixture Models (SOGMMs) ................ 256
Introduction ............................................... 256
Estimating a Second-Order Growth Mixture Model:
A Curve-of-Factors Model (SOGMM of a CFM) ................ 257
Illustrative Example 9.1: A Second-Order Growth
Mixture Model of a CFM (SOGMM-CF) ........................ 259
Illustrative Example 9.2: Avoiding Convergence Problems .. 265
Estimating a Second-Order Growth Mixture Model:
A Factor-of-Curves Model (SOGMM of a FCM) ................ 272
Illustrative Example 9.3: A Second-Order Growth
Mixture Model of a FCM (SOGMM-FC) ...................... 273
Comparison of Classification Between a First-Order GMMWith
Composite Measures and Second-Order GMMs ................. 277
Estimating a Conditional Model (Conditional SOGMM) ......... 279
The Three-Step Approach (Using the AUXILIARY Optioti) to
Add Predictors of Second-Order Trajectory Classes ...... 281
Illustrative Example 9.4: Estimating a Conditional
SOGMM with Predictors .................................. 281
The Three-Step Approach (Using the AUXILIARY Option) to
Add Outcomes of Second-Order Trajectory Classes ........ 285
Illustrative Example 9.5: Estimating a Conditional
SOGMM with Outcomes .................................... 285
Estimating a Multidimensional Growth Mixture Model
(MGMM) ................................................... 287
Illustrative Example 9.6: Estimating a Multidimensional
Growth Mixture Model ................................... 289
Conclusion ................................................. 291
Chapter 9 Exercises ........................................ 293
Answers to Chapter Exercises .................................. 297
Author Index .................................................. 320
Subject Index ................................................. 323
|
|