Навигация

Архив выставки новых поступлений | Отечественные поступления | Иностранные поступления | Сиглы
ОбложкаGu Q. Semiconductor nanolasers / Q.Gu, Y.Fainman. - Cambridge: Cambridge university press, 2017. - viii, 324 p.: ill., tab. - Bibliogr.: p.302-320. - Ind.: p.321-324. - ISBN 978-1-107-11048-9
Шифр: (И/З 86-G92) 02

 

Место хранения: 02 | Отделение ГПНТБ СО РАН | Новосибирск

Оглавление / Contents
 
1  Introduction ................................................. 1
   1.1  The History of Laser Minimization ....................... 2
   1.2  Active Materials for Nanolasers ......................... 7
   1.3  Fundamental Scale Limits of Lasers ...................... 9
   1.4  Efficiency in Nanolasers ............................... 14
   1.5  Laser Rate Equations ................................... 15
   1.6  Nanolaser Types and Their Characteristics .............. 19
        1.6.1  Vertical Cavity Surface-emitting Lasers
               (VCSELs) ........................................ 19
        1.6.2  Photonic Crystal Defect Cavity Lasers ........... 21
        1.6.3  Nanowire Lasers ................................. 22
        1.6.4  Cavity-free Nanolasers .......................... 26
        1.6.5  Metal-dielectric-metal Waveguide-based
               Nanolasers ...................................... 28
        1.6.6  SPASERs ......................................... 33
2  Photonic Mode Metal-dielectric-metal-based Nanolasers ....... 36
   2.1  Metallo-dielectric Cavity Design ....................... 36
   2.2  Invariance of Optimal Metallo-dielectric Waveguide
        Geometry with Respect to Metal-cladding Permittivity ... 42
   2.3  Metallo-dielectric Nanolaser Fabrication ............... 48
   2.4  Optical Pump Penetration Analysis ...................... 51
   2.5  Metallo-dielectric Nanolasers on Silicon ............... 54
   2.6  Micro-photoluminescence Characterization of
        Nanolasers ............................................. 59
3  Purcell Effect and the Evaluation of Purcell and
   Spontaneous Emission Factors ................................ 65
   3.1  Gain Medium and Its Excitation ......................... 67
   3.2  Formulation of Purcell Effect in Semiconductor
        Nanolasers at Room Temperature ......................... 69
   3.3  Applicability of the Formulation ....................... 73
   3.4  Evaluation of Purcell Effect in a Semiconductor
        Nanolaser .............................................. 74
   3.5  Temperature's Effect on Fρ and β ....................... 78
   3.6  Temperature Dependence of Cavity Modes and Emission
        Spectra ................................................ 80
   3.7  Temperature Dependence of Spontaneous Emission Factor .. 84
   3.8  Design for Temperature-insensitive High-β Nanolasers ... 88
4  Plasmonic Mode Metal-dielectric-metal-based Nanolasers ...... 91
   4.1  The Fundamental Promise and Challenge of Plasmonics .... 91
   4.2  Amplification of Propagating Modes ..................... 94
        4.2.1  Modes at MD Interface ........................... 94
        4.2.2  Amplification in Systems of One or Several MD
               Interfaces ...................................... 96
        4.2.3  Amplification in Systems of Many MD Interfaces .. 97
   4.3  MDM Lasers with 2D Confinement ......................... 99
   4.4  Motivation for 3D Confined Coaxial Nanolasers ......... 101
   4.5  Design and Fabrication of Optically Pumped Coaxial
        Nanolasers ............................................ 102
   4.6  Emission Characterization of High β-factor Coaxial
        Nanolasers ............................................ 106
   4.7  Emission Characterization of Unity β-factor Coaxial
        Nanolasers ............................................ 111
   4.8  Rate Equation Analysis of Unity β-factor Coaxial
        Nanolasers ............................................ 112
   4.9  Perspective on Plasmonic Mode Nanolasers .............. 117
5  Antenna-inspired Nano-patch Lasers ......................... 119
   5.1  Optical Mode and Radiation Pattern of Nanopatch
        Lasers ................................................ 119
   5.2  Experimental Demonstration of Optically Pumped
        Nanopatch Laser ....................................... 122
   5.3  Toward Low-threshold, Engineerable Radiation
        Pattern, and Electrical Pumping ....................... 125
6  Active Medium for Semiconductor Nanolasers: MQW VS.
   Bull( Gain ................................................. 132
   6.1  Current Injection in Semiconductor Nanolasers ......... 133
   6.2  Optical Cavity and Material Gain Optimization ......... 135
   6.3  Reservoir Model for Semiconductor Lasers .............. 138
   6.4  Laser Rate-equation Analysis with the Reservoir
        Model ................................................. 140
   6.5  Discussion ............................................ 144
7  Electrically Pumped Nanolasers ............................. 146
   7.1  Optical Mode Design with Realistic Geometrical
        Parameters ............................................ 149
   7.2  Cylindrical Nanolasers with InP Undercut .............. 159
   7.3  Cylindrical Nanolasers without InP Undercut ........... 162
   7.4  Cubical Nanolasers without InP Undercut ............... 163
8  Multi-physics Design for Nanolasers ........................ 168
   8.1  Simulation of Nanolasers' Electrical and Thermal
        Performance ........................................... 168
        8.1.1  Ohmic Resistance ............................... 169
        8.1.2  Calculation of Self-heating .................... 171
        8.1.3  Simulation of Nanolaser Heat Dissipation ....... 173
   8.2  Choice and Fabrication Techniques of Dielectric
        Material for Thermal Management ....................... 177
   8.3  Comparison of Device Performance with Different
        Dielectric Shield Material ............................ 179
        8.3.1   Optical Performance ........................... 179
        8.3.2  Electrical and Thermal Performance ............. 184
        8.3.3  Discussions .................................... 188
   8.4  Preliminary Experimental Validation and Analysis with
        Al2O3 Shield .......................................... 189
        8.4.1  Experimental Validation and Optical Mode
               Analysis ....................................... 189
        8.4.2  Electrical and Thermal Analysis of Measured
               Device ......................................... 193
   8.5  Multi-physics Design for Room-temperature Operation ... 196
   8.6  Discussions ........................................... 199
9  Cavity-free Nanolaser ...................................... 202
   9.1  Dispersion Analysis for Cavity-free Nanolaser ......... 202
   9.2  Effect of Surface Roughness on Light Stopping ......... 207
   9.3  Design of Stoplight Nanolasers ........................ 209
10 Beyond Nanolasers: Inversionless Exciton-polariton
   Microlaser ................................................. 214
   10.1 Background ............................................ 214
   10.2 Strong Coupling and Condensation between Quantum-well
        Excitons and Cavity Photons ........................... 217
   10.3 Coherent Emission of Radiation by the Stimulated
        Scattering of Exciton-polaritons ...................... 223
   10.4 Electrically pumped Polariton Microlasers ............. 224
   10.5 Discussions ........................................... 230
11 Application of Nanolasers: Photonic Integrated Circuits
   and Other Applications ..................................... 231
   11.1 State of the Art for Chip-scale Integration ........... 231
   11.2 Nanolasers' Integration with a Silicon-based
        Platform .............................................. 234
   11.3 Nanolasers'Integration with Optical Waveguides ........ 236
        11.3.1 Far-field Engineering of Metal-clad
               Nanocavities ................................... 236
        11.3.2 Coupling from Nanolasers to Waveguides
               On-chip ........................................ 239
        11.3.3 Coupling from Waveguides to Nanocavities
               On-chip ........................................ 242
   11.4 High-speed Optical Communication with Nanoscale
        Light Sources ......................................... 245
        11.4.1 Small-signal Modulation Dynamics ............... 245
        11.4.2 Large-signal Modulation Dynamics ............... 253
   11.5 Silicon-compatible Miniature Laser .................... 256
        11.5.1 Optically Pumped Sidewall-modulated III-V/Si
               DFB Microlaser ................................. 256
        11.5.2 Electrically Pumped Sidewall-modulated
               III-V/Si DFB Microlaser ........................ 259
        11.5.3 Coupling III-V/Si Edge-emitting Lasers to Si
               Waveguide ...................................... 261
        11.5.4 Perspective: Pushing the Footprint of DFBs to
               the Nanoscale .................................. 263
   11.6 Other Applications and Future Trends of Nanolasers .... 266

Appendix А Spontaneous Emission in Free Space and Cavity ...... 270
   A.l  Nonrelativistic QED in Free Space and in a Resonant
        Cavity ................................................ 270
   A.2  Spontaneous Emission Probability in Free Space and
        in a Resonant Cavity .................................. 273
Appendix В Temperature-dependent Material Gain ................ 275
   B.l  Analysis of the Temperature-dependent Material Gain
        Spectrum of Bulk In0.53Ga0.47As ......................... 275
   B.2  Analysis of the Temperature-dependent Material Gain
        Spectrum of MQW InGaAsP ............................... 279
Appendix С Modeling Thermal Effects in Nanolasers ............. 283
   C.1  Thermal Model Overview ................................ 283
   C.2  Ohmic (Joule) Heating Using a Simple Stack Model ...... 284
   C.3  Junction Heating ...................................... 286
   C.4  Heterojunction Heating ................................ 288
   C.5  Surface Recombination Heating ......................... 288
   С.6  Auger Recombination Heating ........................... 289
Appendix D Constriction Resistance and Current Crowding in
   Nanolasers ................................................. 290
   D.l  Vertical Contact Structure ............................ 290
   D.2  Horizontal Contact Structure .......................... 295
   D.3  Discussion ............................................ 300
References .................................................... 302
Index ......................................................... 321


Архив выставки новых поступлений | Отечественные поступления | Иностранные поступления | Сиглы
 

[О библиотеке | Академгородок | Новости | Выставки | Ресурсы | Библиография | Партнеры | ИнфоЛоция | Поиск]
  © 1997–2024 Отделение ГПНТБ СО РАН  

Документ изменен: Wed Feb 27 14:30:28 2019. Размер: 12,914 bytes.
Посещение N 1109 c 18.12.2018