| Gu Q. Semiconductor nanolasers / Q.Gu, Y.Fainman. - Cambridge: Cambridge university press, 2017. - viii, 324 p.: ill., tab. - Bibliogr.: p.302-320. - Ind.: p.321-324.
- ISBN 978-1-107-11048-9 Шифр: (И/З 86-G92) 02
|
1 Introduction ................................................. 1
1.1 The History of Laser Minimization ....................... 2
1.2 Active Materials for Nanolasers ......................... 7
1.3 Fundamental Scale Limits of Lasers ...................... 9
1.4 Efficiency in Nanolasers ............................... 14
1.5 Laser Rate Equations ................................... 15
1.6 Nanolaser Types and Their Characteristics .............. 19
1.6.1 Vertical Cavity Surface-emitting Lasers
(VCSELs) ........................................ 19
1.6.2 Photonic Crystal Defect Cavity Lasers ........... 21
1.6.3 Nanowire Lasers ................................. 22
1.6.4 Cavity-free Nanolasers .......................... 26
1.6.5 Metal-dielectric-metal Waveguide-based
Nanolasers ...................................... 28
1.6.6 SPASERs ......................................... 33
2 Photonic Mode Metal-dielectric-metal-based Nanolasers ....... 36
2.1 Metallo-dielectric Cavity Design ....................... 36
2.2 Invariance of Optimal Metallo-dielectric Waveguide
Geometry with Respect to Metal-cladding Permittivity ... 42
2.3 Metallo-dielectric Nanolaser Fabrication ............... 48
2.4 Optical Pump Penetration Analysis ...................... 51
2.5 Metallo-dielectric Nanolasers on Silicon ............... 54
2.6 Micro-photoluminescence Characterization of
Nanolasers ............................................. 59
3 Purcell Effect and the Evaluation of Purcell and
Spontaneous Emission Factors ................................ 65
3.1 Gain Medium and Its Excitation ......................... 67
3.2 Formulation of Purcell Effect in Semiconductor
Nanolasers at Room Temperature ......................... 69
3.3 Applicability of the Formulation ....................... 73
3.4 Evaluation of Purcell Effect in a Semiconductor
Nanolaser .............................................. 74
3.5 Temperature's Effect on Fρ and β ....................... 78
3.6 Temperature Dependence of Cavity Modes and Emission
Spectra ................................................ 80
3.7 Temperature Dependence of Spontaneous Emission Factor .. 84
3.8 Design for Temperature-insensitive High-β Nanolasers ... 88
4 Plasmonic Mode Metal-dielectric-metal-based Nanolasers ...... 91
4.1 The Fundamental Promise and Challenge of Plasmonics .... 91
4.2 Amplification of Propagating Modes ..................... 94
4.2.1 Modes at MD Interface ........................... 94
4.2.2 Amplification in Systems of One or Several MD
Interfaces ...................................... 96
4.2.3 Amplification in Systems of Many MD Interfaces .. 97
4.3 MDM Lasers with 2D Confinement ......................... 99
4.4 Motivation for 3D Confined Coaxial Nanolasers ......... 101
4.5 Design and Fabrication of Optically Pumped Coaxial
Nanolasers ............................................ 102
4.6 Emission Characterization of High β-factor Coaxial
Nanolasers ............................................ 106
4.7 Emission Characterization of Unity β-factor Coaxial
Nanolasers ............................................ 111
4.8 Rate Equation Analysis of Unity β-factor Coaxial
Nanolasers ............................................ 112
4.9 Perspective on Plasmonic Mode Nanolasers .............. 117
5 Antenna-inspired Nano-patch Lasers ......................... 119
5.1 Optical Mode and Radiation Pattern of Nanopatch
Lasers ................................................ 119
5.2 Experimental Demonstration of Optically Pumped
Nanopatch Laser ....................................... 122
5.3 Toward Low-threshold, Engineerable Radiation
Pattern, and Electrical Pumping ....................... 125
6 Active Medium for Semiconductor Nanolasers: MQW VS.
Bull( Gain ................................................. 132
6.1 Current Injection in Semiconductor Nanolasers ......... 133
6.2 Optical Cavity and Material Gain Optimization ......... 135
6.3 Reservoir Model for Semiconductor Lasers .............. 138
6.4 Laser Rate-equation Analysis with the Reservoir
Model ................................................. 140
6.5 Discussion ............................................ 144
7 Electrically Pumped Nanolasers ............................. 146
7.1 Optical Mode Design with Realistic Geometrical
Parameters ............................................ 149
7.2 Cylindrical Nanolasers with InP Undercut .............. 159
7.3 Cylindrical Nanolasers without InP Undercut ........... 162
7.4 Cubical Nanolasers without InP Undercut ............... 163
8 Multi-physics Design for Nanolasers ........................ 168
8.1 Simulation of Nanolasers' Electrical and Thermal
Performance ........................................... 168
8.1.1 Ohmic Resistance ............................... 169
8.1.2 Calculation of Self-heating .................... 171
8.1.3 Simulation of Nanolaser Heat Dissipation ....... 173
8.2 Choice and Fabrication Techniques of Dielectric
Material for Thermal Management ....................... 177
8.3 Comparison of Device Performance with Different
Dielectric Shield Material ............................ 179
8.3.1 Optical Performance ........................... 179
8.3.2 Electrical and Thermal Performance ............. 184
8.3.3 Discussions .................................... 188
8.4 Preliminary Experimental Validation and Analysis with
Al2O3 Shield .......................................... 189
8.4.1 Experimental Validation and Optical Mode
Analysis ....................................... 189
8.4.2 Electrical and Thermal Analysis of Measured
Device ......................................... 193
8.5 Multi-physics Design for Room-temperature Operation ... 196
8.6 Discussions ........................................... 199
9 Cavity-free Nanolaser ...................................... 202
9.1 Dispersion Analysis for Cavity-free Nanolaser ......... 202
9.2 Effect of Surface Roughness on Light Stopping ......... 207
9.3 Design of Stoplight Nanolasers ........................ 209
10 Beyond Nanolasers: Inversionless Exciton-polariton
Microlaser ................................................. 214
10.1 Background ............................................ 214
10.2 Strong Coupling and Condensation between Quantum-well
Excitons and Cavity Photons ........................... 217
10.3 Coherent Emission of Radiation by the Stimulated
Scattering of Exciton-polaritons ...................... 223
10.4 Electrically pumped Polariton Microlasers ............. 224
10.5 Discussions ........................................... 230
11 Application of Nanolasers: Photonic Integrated Circuits
and Other Applications ..................................... 231
11.1 State of the Art for Chip-scale Integration ........... 231
11.2 Nanolasers' Integration with a Silicon-based
Platform .............................................. 234
11.3 Nanolasers'Integration with Optical Waveguides ........ 236
11.3.1 Far-field Engineering of Metal-clad
Nanocavities ................................... 236
11.3.2 Coupling from Nanolasers to Waveguides
On-chip ........................................ 239
11.3.3 Coupling from Waveguides to Nanocavities
On-chip ........................................ 242
11.4 High-speed Optical Communication with Nanoscale
Light Sources ......................................... 245
11.4.1 Small-signal Modulation Dynamics ............... 245
11.4.2 Large-signal Modulation Dynamics ............... 253
11.5 Silicon-compatible Miniature Laser .................... 256
11.5.1 Optically Pumped Sidewall-modulated III-V/Si
DFB Microlaser ................................. 256
11.5.2 Electrically Pumped Sidewall-modulated
III-V/Si DFB Microlaser ........................ 259
11.5.3 Coupling III-V/Si Edge-emitting Lasers to Si
Waveguide ...................................... 261
11.5.4 Perspective: Pushing the Footprint of DFBs to
the Nanoscale .................................. 263
11.6 Other Applications and Future Trends of Nanolasers .... 266
Appendix А Spontaneous Emission in Free Space and Cavity ...... 270
A.l Nonrelativistic QED in Free Space and in a Resonant
Cavity ................................................ 270
A.2 Spontaneous Emission Probability in Free Space and
in a Resonant Cavity .................................. 273
Appendix В Temperature-dependent Material Gain ................ 275
B.l Analysis of the Temperature-dependent Material Gain
Spectrum of Bulk In0.53Ga0.47As ......................... 275
B.2 Analysis of the Temperature-dependent Material Gain
Spectrum of MQW InGaAsP ............................... 279
Appendix С Modeling Thermal Effects in Nanolasers ............. 283
C.1 Thermal Model Overview ................................ 283
C.2 Ohmic (Joule) Heating Using a Simple Stack Model ...... 284
C.3 Junction Heating ...................................... 286
C.4 Heterojunction Heating ................................ 288
C.5 Surface Recombination Heating ......................... 288
С.6 Auger Recombination Heating ........................... 289
Appendix D Constriction Resistance and Current Crowding in
Nanolasers ................................................. 290
D.l Vertical Contact Structure ............................ 290
D.2 Horizontal Contact Structure .......................... 295
D.3 Discussion ............................................ 300
References .................................................... 302
Index ......................................................... 321
|
|