Навигация

Архив выставки новых поступлений | Отечественные поступления | Иностранные поступления | Сиглы
ОбложкаFrigon M. Fixed point theory and variational methods for nonlinear differential and integral equations / M.Frigon, G.Infante, P.Jebelean. - Torun: Juliusz Schauder centre for nonlinear studies, Nicolaus Copernicus university, 2017. - 192 p.: ill. - (Lecture notes in nonlinear analysis; vol.16). - Bibliogr. at the end of the chapters. - ISBN 977-2082-433-00-7; ISSN 2082-4335
Шифр: (И/В16-F92) 02

 

Место хранения: 01 | ГПНТБ СО РАН | Новосибирск

Оглавление / Contents
 
Preface ......................................................... 3
1  Fixed point results in Frechet and gauge spaces and
   applications, by M. Frigon ................................... 9
   Goal and outline of the lectures ............................. 9
2  Frechet and gauge spaces .................................... 11
   2.1  Frechet spaces ......................................... 11
   2.2  Gauge spaces ........................................... 18
3  Generalized contractions .................................... 25
   3.1  Single-valued contractions in gauge spaces ............. 25
   3.2  Homotopical invariance for single-valued maps .......... 31
   3.3  Applications of results for contractions ............... 35
4  Multi-valued contractions ................................... 43
   4.1  Multi-valued self-maps ................................. 43
   4.2  Homotopical invariance for multi-valued maps ........... 45
5  Generalization of Caristi's Theorem ......................... 47
   5.1  Generalization of Ekeland's variational Principle ...... 47
   5.2  Inwardness type conditions for multi-valued maps ....... 51
6  Admissibly compact maps ..................................... 55
   6.1   Admissibly compact self-maps .......................... 55
   6.2  Homotopical admissibly compact maps .................... 59
   6.3  Applications of admissibly compact maps ................ 61
7  Maps defined on cones ....................................... 69
   7.1  Cone-compressing/extending type results ................ 70
   7.2  Application to differential equations on [0, ∞) ........ 73
   7.3  Fixed point results for maps on intervals in cones ..... 77
   7.4  Results relying on mixed conditions in a cone .......... 80
8  Appendix: Multi-valued maps and fixed point index ........... 87
   8.1  Multi-valued maps ...................................... 87
   8.2  Fixed point index ...................................... 88
   Bibliography ................................................ 89
9  A short course on positive solutions of systems of ODEs,
   by G. Infante ............................................... 93
   On this short course ........................................ 93
10 The Krasnosel'skii fixed point theorem ...................... 95
11 The fixed point index ...................................... 103
   11.1 A non-existence result ................................ 110
12 Nonnegative solutions of systems of BVPs ................... 113
13 More general BCs ........................................... 119
   13.1 A three-point problem ................................. 119
   13.2 Nonlinear BCs ......................................... 123
14 Radial solutions of PDEs ................................... 131
   14.1 Radial solutions of systems in annular domains ........ 132
   14.2 Radial solutions in exterior domains .................. 134
   Conclusions and further reading ............................ 136
   Acknowledgments ............................................ 136
   Bibliography ............................................... 137
15 Singular ø-Laplacians, by P. Jebelean ...................... 141
   Goal and outline of the lectures ........................... 141
16 Radial solutions ........................................... 143
   16.1 Dirichlet problem in the unit ball .................... 143
   16.2 Dirichlet problem in an annular domain ................ 147
   16.3 Neumann problem (I) ................................... 151
   16.4 Neumann problem (II) .................................. 156
   16.4.1 Preliminaries ....................................... 156
   16.4.2 The problem and its variational formulation ......... 158
17 Non-radial solutions ....................................... 169
   17.1 The Dirichlet problem - first results ................. 169
   17.2 Adding further nonliniarities ......................... 175
18 Periodic solutions ......................................... 181
   18.1 A relativistic pendulum system ........................ 181
   18.2 Multiple critical orbits .............................. 184

Bibliography .................................................. 191


Архив выставки новых поступлений | Отечественные поступления | Иностранные поступления | Сиглы
 

[О библиотеке | Академгородок | Новости | Выставки | Ресурсы | Библиография | Партнеры | ИнфоЛоция | Поиск]
  © 1997–2024 Отделение ГПНТБ СО РАН  

Документ изменен: Wed Feb 27 14:30:18 2019. Размер: 6,804 bytes.
Посещение N 1222 c 17.07.2018