Preface to the Fourth Edition ................................. vii
Preface to the Third Edition ................................... ix
Preface to the Second Edition .................................. xi
Preface to the First Edition ................................. xiii
Particle Interactions and Displacement Damage ................... 1
1 Introduction ............................................... 3
1.1 Radiation and Particle Interactions ........................ 5
1.2 Particles and Types of Interaction ......................... 7
1.2.1 Quarks and Leptons .................................. 9
1.3 Relativist ic Kinematics ................................... 9
1.3.1 The Two-Body Scattering ............................ 13
1.3.2 The Invariant Mass ................................. 16
1.3.2.1 Lorentz-Invariant Quantities and Phase Space ... 18
1.3.3 Relativistic Doppler Effect ........................ 21
1.3.3.1 Redshift Parameter and Astronomy ............... 24
1.4 Atomic Mass, Weight, Standard Weight and Mass Unit ........ 26
1.5 Cross Section and Differential Cross Section .............. 27
1.6 Coulomb Single-Scattering Differential Cross Section in
Laboratory and CoM Systems ................................ 30
1.6.1 Rutherford's Formula and Average Energy
Transferred ........................................ 35
1.7 Detectors and Large Experimental Apparata ................. 39
1.7.1 Trigger, Monitoring, Data Acquisition, Slow
Control ............................................ 41
1.7.2 General Features of Particle Detectors and
Detection Media .................................... 41
1.7.3 Radiation Environments and Silicon Devices ......... 48
2 Electromagnetic Interaction of Charged Particles in
Matter .................................................... 51
2.1 Passage of Ionizing Particles through Matter .............. 52
2.1.1 The Collision Energy-Loss of Massive Charged
Particles .......................................... 52
2.1.1.1 The Barkas -Andersen Effect .................... 62
2.1.1.2 The Shell Correction Term ...................... 64
2.1.1.3 Energy-Loss Minimum, Density Effect and
Relativistic Rise .............................. 66
2.1.1.4 Restricted Energy-Loss and Fermi Plateau ....... 69
2.1.2 Energy-Loss Formula for Compound Materials ......... 73
2.1.3 Energy-Loss Fluctuations ........................... 75
2.1.3.1 δ-Rays, Straggling Function, and Transport
Equation ....................................... 75
2.1.3.2 The Landau-Vavilov Solutions for the
Transport Equation ............................. 78
2.1.3.3 The Most Probable Collision Energy-Loss for
Massive Charged Particles ...................... 80
2.1.3.4 Improved Energy-Loss Distribution and
Distant Collisions ............................. 84
2.1.3.5 Distant Collision Contribution to Energy
Straggling in Thin Silicon Absorbers ........... 88
2.1.3.6 Improved Energy-Loss Distribution for
Multi-Particles in Silicon ..................... 91
2.1.4 Ionization Yield in Gas Media ...................... 92
2.2 Energy Loss of Light and Heavy Ions ....................... 94
2.2.1 Nuclear Stopping Power at Non-Relativistic
Energies ........................................... 97
2.2.1.1 Non-Relativistic Screened Nuclear Cross
Section ....................................... 105
2.2.2 Nuclear Stopping Power at Relativistic Energies
and Energetic Recoil .............................. 109
2.2.3 Range of Heavy Charged Particles and Bragg Curve .. 118
2.3 Passage of Electrons and Positrons through Matter ........ 124
2.3.1 Collision Losses by Electrons and Positrons ....... 125
2.3.1.1 Most Probable Energy-Loss of Electrons and
Positrons ..................................... 128
2.3.2 Practical Range of Electrons ...................... 130
2.3.3 Radiation Energy-Loss by Electrons and Positrons .. 133
2.3.3.1 The Landau-Porneranchuk-Migdal Effect and
Bremsstrahlung Suppression .................... 146
2.3.3.2 Collision and Radiation Stopping Powers ....... 160
2.3.3.3 Radiation Yield and Bremsstrahlung Angular
Distribution .................................. 160
2.3.3.4 Radiation Length and Complete Screening
Approximation ................................. 162
2.3.3.5 Critical Energy ............................... 166
2.4 Scattering of Electrons on Nuclei ........................ 167
2.4.1 The Unscreened Mott Cross Section of Electrons
and Positrons on Nuclei ........................... 169
2.4.1.1 Approximate Solutions for the Mott Cross
Section ....................................... 171
2.4.1.2 Improved Numerical Approach and TZUott
Interpolated Expression ....................... 174
2.4.2 Complete Treatment of Electron Scattering on
Nucleus ........................................... 179
2.4.2.1 Finite Nuclear Size ........................... 181
2.4.2.2 Finite Rest Mass of Target Nucleus ............ 183
2.4.3 Nuclear Stopping Power of Electrons ............... 185
2.5 Multiple and Extended Volume Coulomb Interactions ........ 187
2.5.1 The Multiple Coulomb Scattering ................... 187
2.5.2 Emission of Cerenkov Radiation .................... 194
2.5.3 Emission of Transition Radiation .................. 200
3 Photon Interaction and Electromagnetic Cascades in
Matter ................................................... 207
3.1 Photon Interaction and Absorption in Matter .............. 207
3.1.1 The Photoelectric Effect .......................... 209
3.1.1.1 The Auger Effect .............................. 216
3.1.2 The Compton Scattering ............................ 217
3.1.2.1 The Klein-Nishina Equation for Unpolarized
Photons ....................................... 220
3.1.2.2 Electron Binding Corrections to Compton and
Rayleigh Scatterings .......................... 228
3.1.2.3 The Thomson Cross Section ..................... 231
3.1.2.4 Radiative Corrections and Double Compton
Effect ........................................ 234
3.1.2.5 Inverse Compton Scattering .................... 235
3.1.2.6 Power Loss of Electrons due to Inverse
Compton Scattering ............................ 241
3.1.3 Pair Production ................................... 246
3.1.3.1 Pair Production in the Field of a Nucleus ..... 246
3.1.3.2 Pair Production in the Electron Field ......... 258
3.1.3.3 Angular Distribution of Electron and
Positron Pairs ................................ 260
3.1.4 Photonuclear Scattering, Absorption and
Production ........................................ 260
3.2 Attenuation Coefficients, Dosimetric and
Radiobiological Quantities ............................... 264
3.3 Electromagnetic Cascades in Matter ....................... 279
3.3.1 Phenomenology and Natural Units of
Electromagnetic Cascades .......................... 280
3.3.2 Propagation and Diffusion of Electromagnetic
Cascades in Matter ................................ 281
3.3.2.1 Rossi's Approximation В and Cascade
Multiplication of Electromagnetic Shower ...... 282
3.3.2.2 Longitudinal Development of the
Electromagnetic Shower ........................ 284
3.3.2.3 Lateral Development of Electromagnetic
Showers ....................................... 288
3.3.2.4 Energy Deposition in Electromagnetic
Cascades ...................................... 296
3.3.3 Shower Propagation and Diffusion in Complex
Absorbers ......................................... 297
4 Nuclear Interactions in Matter ........................... 299
4.1 General Properties of the Nucleus ........................ 299
4.1.1 Radius of Nuclei and the Liquid Droplet Model ..... 302
4.1.1.1 Droplet Model and Semi-Empirical Mass
Formula ....................................... 303
4.1.2 Form Factor and Charge Density of Nuclei .......... 305
4.1.3 Angular and Magnetic Moment, Shape of Nuclei ...... 308
4.1.4 Stable and Unstable Nuclei ........................ 309
4.1.4.1 The β-Decay and the Nuclear Capture .......... 311
4.1.4.2 The α-Decay ................................... 313
4.1.5 Fermi Gas Model and Nuclear Shell Model ........... 315
4.1.5.1 7 Emission by Nuclei .......................... 320
4.2 Phenomenology of Interactions on Nuclei at High Energy ... 321
4.2.1 Energy and A-Dependence of Cross Sections ......... 322
4.2.1.1 Collision and Inelastic Length ................ 323
4.2.2 Coherent and Incoherent Interactions on Nuclei .... 327
4.2.2.1 Kinematics for Coherent Condition ............. 327
4.2.2.2 Coherent and Incoherent Scattering ............ 330
4.2.3 Multiplicity of Charged Particles and Angular
Distribution of Secondaries ....................... 335
4.2.3.1 Rapidity and Pseudorapidity Distributions ..... 340
4.2.4 Emission of Heavy Prongs .......................... 344
4.2.5 The Nuclear Spallation Process .................... 347
4.2.6 Nuclear Temperature and Evaporation ............... 350
4.3 Hadronie Shower Development and Propagation in Matter .... 354
4.3.1 Phenomenology of the Hadronie Cascade in Matter ... 355
4.3.2 Natural Units in the Hadronie Cascade ............. 358
4.3.3 Longitudinal and Lateral Hadronie Development ..... 360
5 Physics and Properties of Silicon Semiconductor .......... 367
5.1 Structure and Growth of Silicon Crystals ................. 368
5.1.1 Imperfections and Defects in Crystals ............. 371
5.2 Energy Band Structure and Energy Gap ..................... 372
5.2.1 Energy Gap Dependence on Temperature and
Pressure in Silicon ............................... 375
5.2.2 Effective Mass .................................... 376
5.2.2.1 Conductivity and Density-of-States Effective
Masses in Silicon ............................. 378
5.3 Carrier Concentration and Fermi Level .................... 384
5.3.1 Effective Density-of-States ....................... 385
5.3.1.1 Degenerate and Non-Degenerate Semiconductors .. 391
5.3.1.2 Intrinsic Fermi-Level and Concentration of
Carriers ...................................... 393
5.3.2 Donors and Acceptors .............................. 397
5.3.2.1 Extrinsic Semiconductors and Fermi Level ...... 398
5.3.2.2 Compensated Semiconductors .................... 405
5.3.2.3 Maximun Temperature of Operation of
Extrinsic Semiconductors ...................... 408
5.3.2.4 Quasi-Fermi Levels ............................ 409
5.3.3 Largely Doped and Degenerate Semiconductors ....... 411
5.3.3.1 Bandgap Narrowing in Heavily Doped
Semiconductors ................................ 411
5.3.3.2 Reduction of the Impurity Ionization-Energy
in Heavily Doped Semiconductors ............... 415
6 Transport Phenomena in Semiconductors .................... 417
6.1 Thermal and Drift Motion in Semiconductors ............... 418
6.1.1 Drift and Mobility ................................ 418
6.1.1.1 Mobility in Silicon at High Electric Fields
or Up to Large Doping Concentrations .......... 422
6.1.2 Resistivity ....................................... 428
6.2 Diffusion Mechanism ...................................... 431
6.2.1 Einstein's Relationship ........................... 433
6.3 Thermal Equilibrium and Excess Carriers in
Semiconductors ........................................... 435
6.3.1 Generation and Recombination Processes, Carrier
Lifetimes ......................................... 437
6.3.1.1 Bulk Processes in Direct Semiconductors ....... 437
6.3.1.2 Bulk Processes in Indirect Semiconductors ..... 440
6.3.1.3 Surface Recombination ......................... 445
6.3.1.4 Lifetime of Minority Carriers in Silicon ...... 445
6.4 The Continuity Equations ................................. 446
6.4.1 The Dielectric Relaxation Time and Debye Length ... 450
6.4.2 Ambipolar Transport ............................... 451
6.4.3 Charge Migration and Field-Free Regions ........... 454
6.4.3.1 Carrier Diffusion in Silicon Radiation
Detectors ..................................... 457
6.4.3.2 Measurement of Charge Migration in Silicon
Radiation Detectors ........................... 463
6.5 Hall Effect in Silicon Semiconductors .................... 469
7 Radiation Effects and Displacement Damage in
Semiconductors ........................................... 477
7.1 Energy Loss by Atomic Displacements ...................... 479
7.1.1 Damage Function, NIEL and Displacement Stopping
Power ............................................. 480
7.1.1.1 Knock-On Atoms and Displacement Cascade ....... 486
7.1.1.2 Norgett- Robinson-Torrens Expression .......... 490
7.1.1.3 Displacement Threshold Energy and Annealing
Effects ....................................... 491
7.1.1.4 Neutron Interactions .......................... 492
7.1.1.5 Interactions of Protons, α-Particles, Light-
and Heavy-Ions ................................ 493
7.1.1.6 NIEL from Coulomb Scattering of Protons,
&-Particles, Light- and Heavy-Ions ............ 498
7.1.1.7 Electron Interactions ......................... 500
7.1.1.8 NIEL from Electron-Nucleus Interactions ....... 502
7.1.2 Damage Function for Neutrons, Charged Particles
and Photons ....................................... 505
7.1.2.1 Damage Function for Neutrons .................. 508
7.1.2.2 Damage Function for Protons, Light- and
Heavy-Ions .................................... 508
7.1.2.3 Damage Function for Electrons and Photons ..... 516
7.2 Radiation Induced Defects, Defect Clusters and NIEL ...... 521
7.3 Ionization Energy-Loss and NIEL Processes ................ 527
7.3.1 Imparted Dose in Silicon .......................... 528
7.3.2 Ionization Damage ................................. 532
7.4 Radiation Induced Defects and Modification of Silicon
Bulk and p — n Junction Properties ....................... 534
7.4.1 Displacement Damage Effect on Minority Carrier
Lifetime .......................................... 535
7.4.2 Carrier Generation and Leakage Current ............ 537
7.4.3 Diode Structure and Rectification Down to
Cryogenic Temperature ............................. 539
7.4.3.1 Rectification Property Up to Large Fast-
Neutron Fluences at Room Temperature .......... 540
7.4.3.2 Large Radiation Damage and p — i — n
Structure at Room Temperature ................. 544
7.4.3.3 I — V Characteristics Down to Cryogenic
Temperature ................................... 546
7.4.4 Complex Impedance of Junctions and Cryogenic
Temperatures ...................................... 550
7.4.5 Resistivity, Hall Coefficient and Hall Mobility
at Large Displacement Damage ...................... 558
7.4.6 AFM Structure Investigation in Irradiated
Devices ........................................... 566
Radiation Environments and Particle Detection ................. 569
8 Radiation Environments and Damage in Semiconductors ...... 571
8.1 High-Luminosity Machines Environments for Particle
Physics Experiments ...................................... 571
8.1.1 Ionization Process and LHC Collider Environment ... 576
8.1.2 Non-Ionization Processes, NIEL Scaling
Hypothesis and Collider Environments .............. 576
8.2 Space Radiation Environment .............................. 582
8.2.1 Solar Wind ........................................ 584
8.2.2 Solar and Heliospheric Magnetic Field ............. 591
8.2.3 Extension of the Heliosphere and the Earth
Magnetosphere ..................................... 603
8.2.4 Propagation of Galactic Cosmic Rays through
Interplanetary Space .............................. 608
8.2.4.1 Diffusion Tensor .............................. 618
8.2.4.2 Modulated Differential Intensities of Cosmic
Rays and Drift Velocity ....................... 622
8.2.4.3 Heliosphere Modulation: the HelMod Model ...... 627
8.2.5 Solar, Heliospheric and Galactic Cosmic Rays in
the Interplanetary Space .......................... 633
8.2.6 Trapped Particles and Earth Magnetosphere ......... 638
8.3 Neutron Spectral Fluence in Nuclear Reactor Environment .. 645
8.3.1 Fast Neutron Cross Section on Silicon ............. 646
8.3.2 Energy Distribution of Reactor Neutrons and
Classification .................................... 647
9 Scintillating Media and Scintillator Detectors ........... 649
9.1 Scintillators ............................................ 650
9.1.1 Organic Scintillators ............................. 651
9.1.2 Inorganic Scintillators ........................... 653
9.1.2.1 Novel Inorganic Scintillators ................. 656
9.2 The Cerenkov Detectors ................................... 662
9.2.1 Threshold Cerenkov Detectors ...................... 665
9.2.2 Differential Cerenkov Detectors ................... 670
9.2.3 Ring Imaging Cerenkov (RICH) Detectors ............ 671
9.3 Wavelength Shifters ...................................... 673
9.4 Transition Radiation Detectors (TRD) ..................... 674
9.5 Scintillating Fibers ..................................... 676
9.6 Detection of the Scintillation Light ..................... 679
9.7 Applications in Calorirnetry ............................. 684
9.8 Application in Time-of-Flight (ToF) Technique ............ 685
10 Solid State Detectors .................................... 689
10.1 Standard Planar Float-Zone and MESA Silicon Detectors
Technologies ............................................. 690
10.1.1 Standard Planar Float-Zone Technology ............. 690
10.1.2 MESA Technology ................................... 692
10.2 Basic Principles of Operation ............................ 694
10.2.1 Unpolarized p - n Junction ........................ 695
10.2.2 Polarized p - n Junction .......................... 700
10.2.3 Capacitance ....................................... 701
10.2.4 Charge Collection Measurements .................... 703
10.2.5 Charge Transport in Silicon Diodes ................ 704
10.2.6 Leakage or Reverse Current ........................ 715
10.2.7 Noise Characterization of Silicon Detectors ....... 717
10.3 Charge Collection Efficiency and Hecht Equation .......... 719
10.4 Spectroscopic Characteristics of Standard Planar
Detectors ................................................ 725
10.4.1 Energy Resolution of Standard Planar Detectors .... 726
10.4.2 Energy Resolution and the Fano Factor ............. 729
10.5 Microstrip Detectors ..................................... 731
10.6 Pixel Detector Devices ................................... 736
10.6.1 The Medipix-Type Detecting Device ................. 737
10.6.2 Examples of Application of Medipix2: Particle
Physics ........................................... 740
10.6.2.1 Electrons and Photons ......................... 741
10.6.2.2 Neutrons ...................................... 741
10.6.2.3 Muons, Pions and Protons ...................... 744
10.6.2.4 a-Particles and Heavier Ions .................. 744
10.6.2.5 Charge Sharing ................................ 744
10.6.2.6 Luminosity and Induced Radioactivity
Measurement with Medipix Family Detectors ..... 748
10.7 The Timepix Detecting Device ............................. 751
10.7.1 The Timepix Time-over-Threshold (ToT) Mode of
Operation ......................................... 752
10.7.2 The Pattern Recognition of Tracks with Timepix .... 754
10.7.2.1 Reliability of Track Pattern Recognition of
Timepix Validated with Radioactive Sources .... 754
10.7.2.2 Heavy Tracks Recognition ...................... 755
10.7.2.3 Single Track Analysis ......................... 758
10.7.3 Dependence of the Cluster shape on the Applied
Bias Voltage ...................................... 759
10.7.4 The Timepix Time-of-Arrival (ToA) Mode of
Operation ......................................... 761
10.8 Photodiodes, Avalanche Photodiodes and Silicon
Photomultipliers ......................................... 762
10.8.1 Photodiodes ....................................... 762
10.8.1.1 Photodiode and Electrical Model .............. 764
10.8.2 Avalanche Photodiodes ............................. 770
10.8.3 Geiger-mode Avalanche Photodiodes and Silicon
Photomultiplier Detectors ......................... 772
10.8.4 Electrical Characteristics of SiPM Devices as
Function of Temperature and Frequency ............. 781
10.8.4.1 Capacitance Response .......................... 782
10.8.4.2 Current-Voltage Characteristics ............... 785
10.8.4.3 Electrical Model for SiPMs .................... 785
10.9 Photovoltaic Solar Cells ................................. 790
10.10 Neutrons Detection with Silicon Detectors ............... 797
10.10.1 Principles of Neutron Detection with Silicon
Detectors ........................................ 797
10.10.1.1 Signal in Silicon Detectors for Thermal
Neutrons ..................................... 799
10.10.1.2 Signals in Silicon Detectors by Fast
Neutrons ..................................... 806
10.10.2 3-D Neutron Detectors ............................ 811
11 Displacement Damages and Interactions in Semiconductor
Devices .................................................. 813
11.1 Displacement Damage in Irradiated Bipolar Transistors .... 816
11.1.1 Transit Time of Minority Carriers Across the
Base .............................................. 819
11.1.2 Gain Degradation of Bipolar Transistors and
Messenger-Spratt Equation ......................... 820
11.1.3 Surface and Total Dose Effects on the Gain
Degradation of Bipolar Transistors ................ 824
11.1.4 Generalized Messenger-Spratt Equation for Gain
Degradation of Bipolar Transistors ................ 826
11.1.4.1 Experimental Evidence of Approximate NIEL
Scaling ...................................... 827
11.1.5 Transistor Gain and Self-Annealing ................ 830
11.1.6 Radiation Effects on Low-Resistivity Base
Spreading-Resistance .............................. 832
11.2 Radiation Effects on Silicon Semiconductor Detectors ..... 834
11.2.1 MESA Radiation Detectors .......................... 836
11.2.1.1 Electrical Features of Planar MESA Detectors .. 837
11.2.1.2 Spectroscopic Characteristics of MESA
Detectors ..................................... 838
11.2.2 Results of Irradiation Tests of Planar MESA
Detectors ......................................... 839
11.2.3 Irradiation with Low-Energy Protons in High-
Resistivity Silicon Detectors and NIEL ............ 844
11.3 NIEL Dose Dependence for GaAs Solar Cells ................ 850
11.3.1 Single Junction Solar Cells ....................... 851
11.3.2 Triple Junction Solar Cells ....................... 854
11.4 Single Event Effects ..................................... 855
11.4.1 Classification of SEE ............................. 856
11.4.2 SEE in Spatial Radiation Environment .............. 858
11.4.3 SEE in Atmospheric Radiation Environment .......... 859
11.4.4 SEE in Terrestrial Radiation Environment .......... 860
11.4.5 SEE Produced by Radioactive Sources ............... 861
11.4.6 SEE in Accelerator Radiation Environment .......... 864
11.4.7 SEE Generation Mechanisms ......................... 864
11.4.7.1 Direct Ionization ............................. 864
11.4.7.2 Indirect Ionization ........................... 866
11.4.7.3 Linear Energy Transfer (LET) .................. 868
11.4.7.4 Sensitive Volume .............................. 869
11.4.7.5 Critical Charge ............................... 869
11.4.8 SEE Cross Section ................................. 873
11.4.8.1 Calculation of SEU Rate for Ions .............. 875
11.4.8.2 Calculation of SEU Rate for Protons and
Neutrons л .................................... 877
11.4.9 SEE Mitigation .................................... 880
12 Gas Filled Chambers ...................................... 881
12.1 The Ionization Chamber ................................... 881
12.2 Recombination Effects .................................... 884
12.2.1 Germinate or Initial Recombination ................ 885
12.2.2 Columnar Recombination ............................ 885
12.2.3 The Box Model ..................................... 886
12.2.4 Recombination with Impurities ..................... 887
12.3 Example of Ionization Chamber Application: the a-Cell .... 890
12.3.1 The a-Cell ........................................ 890
12.3.2 Charge Measurement with the a-Cell ................ 893
12.3.3 Examples of Pollution Tests Using the a-Cell ...... 898
12.4 Proportional Counters .................................... 901
12.4.1 Avalanche Multiplication ......................... 901
12.5 Proportional Counters: Cylindrical Coaxial Wire Chamber .. 903
12.6 Multiwire Proportional Chambers (MWPC) ................... 910
12.7 The Geiger-Mueller Counter ............................... 912
13 Principles of Particle Energy Determination .............. 915
13.1 Experimental Physics and Calorimetry ..................... 915
13.1.1 Natural Units in Shower Propagation ............... 919
13.2 Electromagnetic Sampling Calorimetry ..................... 919
13.2.1 Electromagnetic Calorimeter Response .............. 919
13.2.2 The e/mip Ratio ................................... 922
13.2.2.1 e/mip Dependence on Z-Values of Readout and
Passive Absorbers ............................. 926
13.2.2.2 e/mip Dependence on Absorber Thickness ........ 930
13.2.3 e/mip Reduction in High-Z Sampling Calorimeters:
the Local Hardening Effect ........................ 930
13.3 Principles of Calorimetry with Complex Absorbers ......... 934
13.3.1 The Filtering Effect and How to Tune the e/mip
Ratio ............................................. 936
13.3.2 e/mip Reduction by Combining Local Hardening and
Filtering Effects ................................. 941
13.4 Energy Resolution in Sampling Electromagnetic
Calorimetry .............................................. 943
13.4.1 Visible Energy Fluctuations ....................... 943
13.4.1.1 Calorimeter Energy Resolution for Dense
Read-out Detectors ............................ 945
13.4.1.2 Calorimeter Energy Resolution for Gas
Readout Detectors ............................. 949
13.4.2 Effect of Limited Containment on Energy
Resolution ........................................ 953
13.5 Homogeneous Calorimeters ................................. 957
13.5.1 General Considerations ............................ 957
13.5.2 Energy Measurement ................................ 960
13.6 Position Measurement ..................................... 967
13.7 Electron Hadron Separation ............................... 971
13.8 Hadronie Calorimetry ..................................... 972
13.8.1 Intrinsic Properties of the Hadronie
Calorimeter ....................................... 972
13.8.1.1 The ℮/h, ℮/π, h/mip and π/mip Ratios .......... 973
13.8.1.2 Compensating Condition ℮/h = ℮/π = 1 and
Linear Response ............................... 977
13.9 Methods to Achieve the Compensation Condition ............ 981
13.9.1 Compensation Condition by Detecting Neutron
Energy ............................................ 982
13.9.2 Compensation Condition by Tuning the ℮/mip Ratio .. 988
13.10 Compensation and Hadronie Energy Resolution ............. 998
13.10.1 Non-Compensation Effects and the Ø(℮/π) Term .... 1004
13.10.2 Determination of Effective Intrinsic
Resolutions ..................................... 1006
13.10.3 Effect of Visible-Energy Losses on Calorimeter
Energy Resolution ............................... 1008
13.11 Calorimetry at Very High Energy ........................ 1009
13.11.1 General Considerations .......................... 1009
13.11.2 Air Showers (AS) and Extensive Air Showers
(EAS) ........................................... 1013
13.11.3 Electromagnetic Air Showers ..................... 1016
13.11.3.1 Longitudinal Development .................... 1016
13.11.3.2 Lateral Development ......................... 1017
13.11.4 Hadronie Extensive Air Showers .................. 1019
13.11.5 The Muon Component of Extensive Air Showers ..... 1021
14 Superheated Droplet (Bubble) Detectors and CDM Search ... 1023
14.1 The Superheated Droplet Detectors and their Operation ... 1026
14.1.1 Neutron Response Measurement ..................... 1030
14.1.2 a-Particle Response Measurement .................. 1034
14.1.3 Radon Detection .................................. 1037
14.1.4 Spontaneous Nucleation ........................... 1038
14.1.5 Signal Measurement with Piezoelectric Sensors .... 1039
14.2 Search of Cold Dark Matter (CDM) ........................ 1040
14.2.1 Calculation of the Neutralino-Nucleon Exclusion
Limits ........................................... 1041
14.2.1.1 Spin-Independent or Coherent Cross Section ... 1042
14.2.1.2 Spin-Dependent or Incoherent Cross Section ... 1045
14.2.1.3 Calculation of (SP) and (Sn) in Nuclei ....... 1050
14.2.1.4 Shell Models Calculation and Validation of
(Sp) and (Sn) ................................ 1055
14.2.2 The PICASSO Experiment, an Example ............... 1055
14.2.3 Status of Dark Matter Searches ................... 1057
14.3 Double Beta Decay ....................................... 1059
15 Medical Physics Applications ............................ 1065
15.1 Single Photon Emission Computed Tomography (SPECT) ...... 1067
15.2 Positron Emission Tomography (PET) ...................... 1082
15.2.1 Use of Silicon in PET Imagers ................... 1088
15.2.1.1 Example of Silicon Microstrip Detectors
Used in Scanners ............................. 1088
15.2.1.2 Example of Silicon Pad Detectors Used in
Scanners ..................................... 1089
15.2.1.3 Example of Silicon Pixel Detectors Used in
Scanners ..................................... 1089
15.2.1.4 Example of Silicon Photomultipliers (SiPM)
Detectors Used in Scanners ................... 1091
15.3 X-Ray Medical Imaging ................................... 1095
15.3.1 The Contrast ..................................... 1096
15.3.2 The Modulation Transfer Function ................. 1096
15.3.3 The Detective Quantum Efficiency ................. 1097
15.4 Magnetic Resonance Imaging (MRI) ........................ 1099
15.4.1 Physical Basis of MRI ............................ 1099
15.4.2 Forming an Image ................................. 1102
15.4.2.1 Spin-Echo .................................... 1102
15.4.2.2 Gradient-Echo ................................ 1103
15.4.2.3 Space Positioning ............................ 1103
15.4.2.4 Flows ........................................ 1104
15.4.2.5 Functional MRI ............................... 1105
Appendix A General Properties and Constants ................. 1107
A.l Physical Constants .................................. 1108
A.2 Periodic Table of Elements .......................... 1113
A.3 Conversion Factors .................................. 1115
A.4 Electronic Structure of the Elements ................ 1127
A.5 Interpolating Parameter for 7eMott .................. 1130
A.6 Isotopic Abundances ................................. 1148
A.7 Commonly Used Radioactive Sources ................... 1150
A.8 Free Electron Fermi Gas ............................. 1151
A.9 Gamma-Ray Energy and Intensity Standards ............ 1154
A.10 Screened Relativistic NIEL for Electrons and
Protons in GaAs and Si media ........................ 1158
Appendix В Mathematics and Statistics ....................... 1167
B.l Probability and Statistics for Detection Systems .... 1168
B.2 Table of Integrals .................................. 1180
Bibliography ................................................. 1183
Index ........................................................ 1261
|