Leroy C. Principles of radiation interaction in matter and detection (New Jersey, 2016). - ОГЛАВЛЕНИЕ / CONTENTS
Навигация

Архив выставки новых поступлений | Отечественные поступления | Иностранные поступления | Сиглы
ОбложкаLeroy C. Principles of radiation interaction in matter and detection / C.Leroy, P -G. Rancoita. - 4th ed. - New Jersey: World scientific, 2016. - xxii, 1316 p.: ill., tab. - Bibliogr.: p.1183-1260. - Ind.: p.1261-1316. - ISBN 978-981-4603-18-8
Шифр: (И/В38-L57) 02

 

Место хранения: 02 | Отделение ГПНТБ СО РАН | Новосибирск

Оглавление / Contents
 
Preface to the Fourth Edition ................................. vii
Preface to the Third Edition ................................... ix
Preface to the Second Edition .................................. xi
Preface to the First Edition ................................. xiii

Particle Interactions and Displacement Damage ................... 1

1    Introduction ............................................... 3
1.1  Radiation and Particle Interactions ........................ 5
1.2  Particles and Types of Interaction ......................... 7
     1.2.1  Quarks and Leptons .................................. 9
1.3  Relativist ic Kinematics ................................... 9
     1.3.1  The Two-Body Scattering ............................ 13
     1.3.2  The Invariant Mass ................................. 16
       1.3.2.1  Lorentz-Invariant Quantities and Phase Space ... 18
     1.3.3  Relativistic Doppler Effect ........................ 21
       1.3.3.1  Redshift Parameter and Astronomy ............... 24
1.4  Atomic Mass, Weight, Standard Weight and Mass Unit ........ 26
1.5  Cross Section and Differential Cross Section .............. 27
1.6  Coulomb Single-Scattering Differential Cross Section in
     Laboratory and CoM Systems ................................ 30
     1.6.1  Rutherford's Formula and Average Energy 
            Transferred ........................................ 35
1.7  Detectors and Large Experimental Apparata ................. 39
     1.7.1  Trigger, Monitoring, Data Acquisition, Slow 
            Control ............................................ 41
     1.7.2  General Features of Particle Detectors and 
            Detection Media .................................... 41
     1.7.3  Radiation Environments and Silicon Devices ......... 48

2    Electromagnetic Interaction of Charged Particles in 
     Matter .................................................... 51
2.1  Passage of Ionizing Particles through Matter .............. 52
     2.1.1  The Collision Energy-Loss of Massive Charged 
            Particles .......................................... 52
       2.1.1.1  The Barkas -Andersen Effect .................... 62
       2.1.1.2  The Shell Correction Term ...................... 64
       2.1.1.3  Energy-Loss Minimum, Density Effect and
                Relativistic Rise .............................. 66
       2.1.1.4  Restricted Energy-Loss and Fermi Plateau ....... 69
     2.1.2  Energy-Loss Formula for Compound Materials ......... 73
     2.1.3  Energy-Loss Fluctuations ........................... 75
       2.1.3.1  δ-Rays, Straggling Function, and Transport
                Equation ....................................... 75
       2.1.3.2  The Landau-Vavilov Solutions for the
                Transport Equation ............................. 78
       2.1.3.3  The Most Probable Collision Energy-Loss for
                Massive Charged Particles ...................... 80
       2.1.3.4  Improved Energy-Loss Distribution and
                Distant Collisions ............................. 84
       2.1.3.5  Distant Collision Contribution to Energy
                Straggling in Thin Silicon Absorbers ........... 88
       2.1.3.6  Improved Energy-Loss Distribution for
                Multi-Particles in Silicon ..................... 91
     2.1.4  Ionization Yield in Gas Media ...................... 92
2.2  Energy Loss of Light and Heavy Ions ....................... 94
     2.2.1  Nuclear Stopping Power at Non-Relativistic 
            Energies ........................................... 97
       2.2.1.1  Non-Relativistic Screened Nuclear Cross
                Section ....................................... 105
     2.2.2  Nuclear Stopping Power at Relativistic Energies 
            and Energetic Recoil .............................. 109
     2.2.3  Range of Heavy Charged Particles and Bragg Curve .. 118
2.3  Passage of Electrons and Positrons through Matter ........ 124
     2.3.1  Collision Losses by Electrons and Positrons ....... 125
       2.3.1.1  Most Probable Energy-Loss of Electrons and
                Positrons ..................................... 128
     2.3.2  Practical Range of Electrons ...................... 130
     2.3.3  Radiation Energy-Loss by Electrons and Positrons .. 133
       2.3.3.1  The Landau-Porneranchuk-Migdal Effect and
                Bremsstrahlung Suppression .................... 146
       2.3.3.2  Collision and Radiation Stopping Powers ....... 160
       2.3.3.3  Radiation Yield and Bremsstrahlung Angular
                Distribution .................................. 160
       2.3.3.4  Radiation Length and Complete Screening
                Approximation ................................. 162
       2.3.3.5  Critical Energy ............................... 166
2.4  Scattering of Electrons on Nuclei ........................ 167
     2.4.1  The Unscreened Mott Cross Section of Electrons 
            and Positrons on Nuclei ........................... 169
       2.4.1.1  Approximate Solutions for the Mott Cross
                Section ....................................... 171
       2.4.1.2  Improved Numerical Approach and TZUott
                Interpolated Expression ....................... 174
     2.4.2  Complete Treatment of Electron Scattering on 
            Nucleus ........................................... 179
       2.4.2.1  Finite Nuclear Size ........................... 181
       2.4.2.2  Finite Rest Mass of Target Nucleus ............ 183
     2.4.3  Nuclear Stopping Power of Electrons ............... 185
2.5  Multiple and Extended Volume Coulomb Interactions ........ 187
     2.5.1  The Multiple Coulomb Scattering ................... 187
     2.5.2  Emission of Cerenkov Radiation .................... 194
     2.5.3  Emission of Transition Radiation .................. 200

3    Photon Interaction and Electromagnetic Cascades in
     Matter ................................................... 207
3.1  Photon Interaction and Absorption in Matter .............. 207
     3.1.1  The Photoelectric Effect .......................... 209
       3.1.1.1  The Auger Effect .............................. 216
     3.1.2  The Compton Scattering ............................ 217
       3.1.2.1  The Klein-Nishina Equation for Unpolarized
                Photons ....................................... 220
       3.1.2.2  Electron Binding Corrections to Compton and
                Rayleigh Scatterings .......................... 228
       3.1.2.3  The Thomson Cross Section ..................... 231
       3.1.2.4  Radiative Corrections and Double Compton
                Effect ........................................ 234
       3.1.2.5  Inverse Compton Scattering .................... 235
       3.1.2.6  Power Loss of Electrons due to Inverse 
                Compton Scattering ............................ 241
     3.1.3  Pair Production ................................... 246
       3.1.3.1  Pair Production in the Field of a Nucleus ..... 246
       3.1.3.2  Pair Production in the Electron Field ......... 258
       3.1.3.3  Angular Distribution of Electron and 
                Positron Pairs ................................ 260
     3.1.4  Photonuclear Scattering, Absorption and 
            Production ........................................ 260
3.2  Attenuation Coefficients, Dosimetric and
     Radiobiological Quantities ............................... 264
3.3  Electromagnetic Cascades in Matter ....................... 279
     3.3.1  Phenomenology and Natural Units of 
            Electromagnetic Cascades .......................... 280
     3.3.2  Propagation and Diffusion of Electromagnetic
            Cascades in Matter ................................ 281
       3.3.2.1  Rossi's Approximation В and Cascade
                Multiplication of Electromagnetic Shower ...... 282
       3.3.2.2  Longitudinal Development of the 
                Electromagnetic Shower ........................ 284
       3.3.2.3  Lateral Development of Electromagnetic
                Showers ....................................... 288
       3.3.2.4  Energy Deposition in Electromagnetic
                Cascades ...................................... 296
     3.3.3  Shower Propagation and Diffusion in Complex
            Absorbers ......................................... 297

4    Nuclear Interactions in Matter ........................... 299
4.1  General Properties of the Nucleus ........................ 299
     4.1.1  Radius of Nuclei and the Liquid Droplet Model ..... 302
       4.1.1.1  Droplet Model and Semi-Empirical Mass
                Formula ....................................... 303
     4.1.2  Form Factor and Charge Density of Nuclei .......... 305
     4.1.3  Angular and Magnetic Moment, Shape of Nuclei ...... 308
     4.1.4  Stable and Unstable Nuclei ........................ 309
       4.1.4.1  The β-Decay and the Nuclear Capture .......... 311
       4.1.4.2  The α-Decay ................................... 313
     4.1.5  Fermi Gas Model and Nuclear Shell Model ........... 315
       4.1.5.1  7 Emission by Nuclei .......................... 320
4.2  Phenomenology of Interactions on Nuclei at High Energy ... 321
     4.2.1  Energy and A-Dependence of Cross Sections ......... 322
       4.2.1.1  Collision and Inelastic Length ................ 323
     4.2.2  Coherent and Incoherent Interactions on Nuclei .... 327
       4.2.2.1  Kinematics for Coherent Condition ............. 327
       4.2.2.2  Coherent and Incoherent Scattering ............ 330
     4.2.3  Multiplicity of Charged Particles and Angular
            Distribution of Secondaries ....................... 335
       4.2.3.1  Rapidity and Pseudorapidity Distributions ..... 340
     4.2.4  Emission of Heavy Prongs .......................... 344
     4.2.5  The Nuclear Spallation Process .................... 347
     4.2.6  Nuclear Temperature and Evaporation ............... 350
4.3  Hadronie Shower Development and Propagation in Matter .... 354
     4.3.1  Phenomenology of the Hadronie Cascade in Matter ... 355
     4.3.2  Natural Units in the Hadronie Cascade ............. 358
     4.3.3  Longitudinal and Lateral Hadronie Development ..... 360

5    Physics and Properties of Silicon Semiconductor .......... 367
5.1  Structure and Growth of Silicon Crystals ................. 368
     5.1.1  Imperfections and Defects in Crystals ............. 371
5.2  Energy Band Structure and Energy Gap ..................... 372
     5.2.1  Energy Gap Dependence on Temperature and
            Pressure in Silicon ............................... 375
     5.2.2  Effective Mass .................................... 376
       5.2.2.1  Conductivity and Density-of-States Effective
                Masses in Silicon ............................. 378
5.3  Carrier Concentration and Fermi Level .................... 384
     5.3.1  Effective Density-of-States ....................... 385
       5.3.1.1  Degenerate and Non-Degenerate Semiconductors .. 391
       5.3.1.2  Intrinsic Fermi-Level and Concentration of
                Carriers ...................................... 393
     5.3.2  Donors and Acceptors .............................. 397
       5.3.2.1  Extrinsic Semiconductors and Fermi Level ...... 398
       5.3.2.2  Compensated Semiconductors .................... 405
       5.3.2.3  Maximun Temperature of Operation of
                Extrinsic Semiconductors ...................... 408
       5.3.2.4  Quasi-Fermi Levels ............................ 409
     5.3.3  Largely Doped and Degenerate Semiconductors ....... 411
       5.3.3.1  Bandgap Narrowing in Heavily Doped
                Semiconductors ................................ 411
       5.3.3.2  Reduction of the Impurity Ionization-Energy
                in Heavily Doped Semiconductors ............... 415

6    Transport Phenomena in Semiconductors .................... 417
6.1  Thermal and Drift Motion in Semiconductors ............... 418
     6.1.1  Drift and Mobility ................................ 418
       6.1.1.1  Mobility in Silicon at High Electric Fields
                or Up to Large Doping Concentrations .......... 422
     6.1.2  Resistivity ....................................... 428
6.2  Diffusion Mechanism ...................................... 431
     6.2.1  Einstein's Relationship ........................... 433
6.3  Thermal Equilibrium and Excess Carriers in
     Semiconductors ........................................... 435
     6.3.1  Generation and Recombination Processes, Carrier
            Lifetimes ......................................... 437
       6.3.1.1  Bulk Processes in Direct Semiconductors ....... 437
       6.3.1.2  Bulk Processes in Indirect Semiconductors ..... 440
       6.3.1.3  Surface Recombination ......................... 445
       6.3.1.4  Lifetime of Minority Carriers in Silicon ...... 445
6.4  The Continuity Equations ................................. 446
     6.4.1  The Dielectric Relaxation Time and Debye Length ... 450
     6.4.2  Ambipolar Transport ............................... 451
     6.4.3  Charge Migration and Field-Free Regions ........... 454
       6.4.3.1  Carrier Diffusion in Silicon Radiation 
                Detectors ..................................... 457
       6.4.3.2  Measurement of Charge Migration in Silicon
                Radiation Detectors ........................... 463
6.5  Hall Effect in Silicon Semiconductors .................... 469

7    Radiation Effects and Displacement Damage in 
     Semiconductors ........................................... 477
7.1  Energy Loss by Atomic Displacements ...................... 479
     7.1.1  Damage Function,  NIEL and Displacement Stopping
            Power ............................................. 480
       7.1.1.1  Knock-On Atoms and Displacement Cascade ....... 486
       7.1.1.2  Norgett- Robinson-Torrens Expression .......... 490
       7.1.1.3  Displacement Threshold Energy and Annealing
                Effects ....................................... 491
       7.1.1.4  Neutron Interactions .......................... 492
       7.1.1.5  Interactions of Protons, α-Particles, Light- 
                and Heavy-Ions ................................ 493
       7.1.1.6  NIEL from Coulomb Scattering of Protons,
                &-Particles, Light- and Heavy-Ions ............ 498
       7.1.1.7  Electron Interactions ......................... 500
       7.1.1.8  NIEL from Electron-Nucleus Interactions ....... 502
     7.1.2  Damage Function for Neutrons, Charged Particles 
            and Photons ....................................... 505
       7.1.2.1  Damage Function for Neutrons .................. 508
       7.1.2.2  Damage Function for Protons, Light- and
                Heavy-Ions .................................... 508
       7.1.2.3  Damage Function for Electrons and Photons ..... 516
7.2  Radiation Induced Defects, Defect Clusters and NIEL ...... 521
7.3  Ionization Energy-Loss and NIEL Processes ................ 527
     7.3.1  Imparted Dose in Silicon .......................... 528
     7.3.2  Ionization Damage ................................. 532
7.4  Radiation Induced Defects and Modification of Silicon 
     Bulk and p — n Junction Properties ....................... 534
     7.4.1  Displacement Damage Effect on Minority Carrier
            Lifetime .......................................... 535
     7.4.2  Carrier Generation and Leakage Current ............ 537
     7.4.3  Diode Structure and Rectification Down to 
            Cryogenic Temperature ............................. 539
       7.4.3.1  Rectification Property Up to Large Fast-
                Neutron Fluences at Room Temperature .......... 540
       7.4.3.2  Large Radiation Damage and p — i — n 
                Structure at Room Temperature ................. 544
       7.4.3.3  I — V Characteristics Down to Cryogenic
                Temperature ................................... 546
     7.4.4  Complex Impedance of Junctions and Cryogenic
            Temperatures ...................................... 550
     7.4.5  Resistivity, Hall Coefficient and Hall Mobility
            at Large Displacement Damage ...................... 558
     7.4.6  AFM Structure Investigation in Irradiated 
            Devices ........................................... 566

Radiation Environments and Particle Detection ................. 569

8    Radiation Environments and Damage in Semiconductors ...... 571
8.1  High-Luminosity Machines Environments for Particle
     Physics Experiments ...................................... 571
     8.1.1  Ionization Process and LHC Collider Environment ... 576
     8.1.2  Non-Ionization Processes, NIEL Scaling 
            Hypothesis and Collider Environments .............. 576
8.2  Space Radiation Environment .............................. 582
     8.2.1  Solar Wind ........................................ 584
     8.2.2  Solar and Heliospheric Magnetic Field ............. 591
     8.2.3  Extension of the Heliosphere and the Earth
            Magnetosphere ..................................... 603
     8.2.4  Propagation of Galactic Cosmic Rays through
            Interplanetary Space .............................. 608
       8.2.4.1  Diffusion Tensor .............................. 618
       8.2.4.2  Modulated Differential Intensities of Cosmic
                Rays and Drift Velocity ....................... 622
       8.2.4.3  Heliosphere Modulation: the HelMod Model ...... 627
     8.2.5  Solar, Heliospheric and Galactic Cosmic Rays in
            the Interplanetary Space .......................... 633
     8.2.6  Trapped Particles and Earth Magnetosphere ......... 638
8.3  Neutron Spectral Fluence in Nuclear Reactor Environment .. 645
     8.3.1  Fast Neutron Cross Section on Silicon ............. 646
     8.3.2  Energy Distribution of Reactor Neutrons and
            Classification .................................... 647

9    Scintillating Media and Scintillator Detectors ........... 649
9.1  Scintillators ............................................ 650
     9.1.1  Organic Scintillators ............................. 651
     9.1.2  Inorganic Scintillators ........................... 653
       9.1.2.1  Novel Inorganic Scintillators ................. 656
9.2  The Cerenkov Detectors ................................... 662
     9.2.1  Threshold Cerenkov Detectors ...................... 665
     9.2.2  Differential Cerenkov Detectors ................... 670
     9.2.3  Ring Imaging Cerenkov (RICH) Detectors ............ 671
9.3  Wavelength Shifters ...................................... 673
9.4  Transition Radiation Detectors (TRD) ..................... 674
9.5  Scintillating Fibers ..................................... 676
9.6  Detection of the Scintillation Light ..................... 679
9.7  Applications in Calorirnetry ............................. 684
9.8  Application in Time-of-Flight (ToF) Technique ............ 685

10   Solid State Detectors .................................... 689
10.1 Standard Planar Float-Zone and MESA Silicon Detectors
     Technologies ............................................. 690
     10.1.1 Standard Planar Float-Zone Technology ............. 690
     10.1.2 MESA Technology ................................... 692
10.2 Basic Principles of Operation ............................ 694
     10.2.1 Unpolarized p - n Junction ........................ 695
     10.2.2 Polarized p - n Junction .......................... 700
     10.2.3 Capacitance ....................................... 701
     10.2.4 Charge Collection Measurements .................... 703
     10.2.5 Charge Transport in Silicon Diodes ................ 704
     10.2.6 Leakage or Reverse Current ........................ 715
     10.2.7 Noise Characterization of Silicon Detectors ....... 717
10.3 Charge Collection Efficiency and Hecht Equation .......... 719
10.4 Spectroscopic Characteristics of Standard Planar
     Detectors ................................................ 725
     10.4.1 Energy Resolution of Standard Planar Detectors .... 726
     10.4.2 Energy Resolution and the Fano Factor ............. 729
10.5 Microstrip Detectors ..................................... 731
10.6 Pixel Detector Devices ................................... 736
     10.6.1 The Medipix-Type Detecting Device ................. 737
     10.6.2 Examples of Application of Medipix2: Particle
            Physics ........................................... 740
       10.6.2.1 Electrons and Photons ......................... 741
       10.6.2.2 Neutrons ...................................... 741
       10.6.2.3 Muons, Pions and Protons ...................... 744
       10.6.2.4 a-Particles and Heavier Ions .................. 744
       10.6.2.5 Charge Sharing ................................ 744
       10.6.2.6 Luminosity and Induced Radioactivity
                Measurement with Medipix Family Detectors ..... 748
10.7 The Timepix Detecting Device ............................. 751
     10.7.1 The Timepix Time-over-Threshold (ToT) Mode of
            Operation ......................................... 752
     10.7.2 The Pattern Recognition of Tracks with Timepix .... 754
       10.7.2.1 Reliability of Track Pattern Recognition of
                Timepix Validated with Radioactive Sources .... 754
       10.7.2.2 Heavy Tracks Recognition ...................... 755
       10.7.2.3 Single Track Analysis ......................... 758
     10.7.3 Dependence of the Cluster shape on the Applied 
            Bias Voltage ...................................... 759
     10.7.4 The Timepix Time-of-Arrival (ToA) Mode of 
            Operation ......................................... 761
10.8 Photodiodes, Avalanche Photodiodes and Silicon 
     Photomultipliers ......................................... 762
     10.8.1 Photodiodes ....................................... 762
       10.8.1.1  Photodiode and Electrical Model .............. 764
     10.8.2 Avalanche Photodiodes ............................. 770
     10.8.3 Geiger-mode Avalanche Photodiodes and Silicon
            Photomultiplier Detectors ......................... 772
     10.8.4 Electrical Characteristics of SiPM Devices as 
            Function of Temperature and Frequency ............. 781
       10.8.4.1 Capacitance Response .......................... 782
       10.8.4.2 Current-Voltage Characteristics ............... 785
       10.8.4.3 Electrical Model for SiPMs .................... 785
10.9 Photovoltaic Solar Cells ................................. 790
10.10 Neutrons Detection with Silicon Detectors ............... 797
     10.10.1 Principles of Neutron Detection with Silicon 
             Detectors ........................................ 797
       10.10.1.1 Signal in Silicon Detectors for Thermal
                 Neutrons ..................................... 799
       10.10.1.2 Signals in Silicon Detectors by Fast 
                 Neutrons ..................................... 806
     10.10.2 3-D Neutron Detectors ............................ 811

11   Displacement Damages and Interactions in Semiconductor 
     Devices .................................................. 813
11.1 Displacement Damage in Irradiated Bipolar Transistors .... 816
     11.1.1 Transit Time of Minority Carriers Across the 
            Base .............................................. 819
     11.1.2 Gain Degradation of Bipolar Transistors and
            Messenger-Spratt Equation ......................... 820
     11.1.3 Surface and Total Dose Effects on the Gain 
            Degradation of Bipolar Transistors ................ 824
     11.1.4 Generalized Messenger-Spratt Equation for Gain
            Degradation of Bipolar Transistors ................ 826
       11.1.4.1  Experimental Evidence of Approximate NIEL
                 Scaling ...................................... 827
     11.1.5 Transistor Gain and Self-Annealing ................ 830
     11.1.6 Radiation Effects on Low-Resistivity Base 
            Spreading-Resistance .............................. 832
11.2 Radiation Effects on Silicon Semiconductor Detectors ..... 834
     11.2.1 MESA Radiation Detectors .......................... 836
       11.2.1.1 Electrical Features of Planar MESA Detectors .. 837
       11.2.1.2 Spectroscopic Characteristics of MESA
                Detectors ..................................... 838
     11.2.2 Results of Irradiation Tests of Planar MESA 
            Detectors ......................................... 839
     11.2.3 Irradiation with Low-Energy Protons in High-
            Resistivity Silicon Detectors and NIEL ............ 844
11.3 NIEL Dose Dependence for GaAs Solar Cells ................ 850
     11.3.1 Single Junction Solar Cells ....................... 851
     11.3.2 Triple Junction Solar Cells ....................... 854
11.4 Single Event Effects ..................................... 855
     11.4.1 Classification of SEE ............................. 856
     11.4.2 SEE in Spatial Radiation Environment .............. 858
     11.4.3 SEE in Atmospheric Radiation Environment .......... 859
     11.4.4 SEE in Terrestrial Radiation Environment .......... 860
     11.4.5 SEE Produced by Radioactive Sources ............... 861
     11.4.6 SEE in Accelerator Radiation Environment .......... 864
     11.4.7 SEE Generation Mechanisms ......................... 864
       11.4.7.1 Direct Ionization ............................. 864
       11.4.7.2 Indirect Ionization ........................... 866
       11.4.7.3 Linear Energy Transfer (LET) .................. 868
       11.4.7.4 Sensitive Volume .............................. 869
       11.4.7.5 Critical Charge ............................... 869
     11.4.8 SEE Cross Section ................................. 873
       11.4.8.1 Calculation of SEU Rate for Ions .............. 875
       11.4.8.2 Calculation of SEU Rate for Protons and
                Neutrons л .................................... 877
     11.4.9 SEE Mitigation .................................... 880

12   Gas Filled Chambers ...................................... 881
12.1 The Ionization Chamber ................................... 881
12.2 Recombination Effects .................................... 884
     12.2.1 Germinate or Initial Recombination ................ 885
     12.2.2 Columnar Recombination ............................ 885
     12.2.3 The Box Model ..................................... 886
     12.2.4 Recombination with Impurities ..................... 887
12.3 Example of Ionization Chamber Application: the a-Cell .... 890
     12.3.1 The a-Cell ........................................ 890
     12.3.2 Charge Measurement with the a-Cell ................ 893
     12.3.3 Examples of Pollution Tests Using the a-Cell ...... 898
12.4 Proportional Counters .................................... 901
     12.4.1  Avalanche Multiplication ......................... 901
12.5 Proportional Counters: Cylindrical Coaxial Wire Chamber .. 903
12.6 Multiwire Proportional Chambers (MWPC) ................... 910
12.7 The Geiger-Mueller Counter ............................... 912

13   Principles of Particle Energy Determination .............. 915
13.1 Experimental Physics and Calorimetry ..................... 915
     13.1.1 Natural Units in Shower Propagation ............... 919
13.2 Electromagnetic Sampling Calorimetry ..................... 919
     13.2.1 Electromagnetic Calorimeter Response .............. 919
     13.2.2 The e/mip Ratio ................................... 922
       13.2.2.1 e/mip Dependence on Z-Values of Readout and
                Passive Absorbers ............................. 926
       13.2.2.2 e/mip Dependence on Absorber Thickness ........ 930
     13.2.3 e/mip Reduction in High-Z Sampling Calorimeters:
            the Local Hardening Effect ........................ 930
13.3 Principles of Calorimetry with Complex Absorbers ......... 934
     13.3.1 The Filtering Effect and How to Tune the e/mip
            Ratio ............................................. 936
     13.3.2 e/mip Reduction by Combining Local Hardening and
            Filtering Effects ................................. 941
13.4 Energy Resolution in Sampling Electromagnetic 
     Calorimetry .............................................. 943
     13.4.1 Visible Energy Fluctuations ....................... 943
       13.4.1.1 Calorimeter Energy Resolution for Dense 
                Read-out Detectors ............................ 945
       13.4.1.2 Calorimeter Energy Resolution for Gas 
                Readout Detectors ............................. 949
     13.4.2 Effect of Limited Containment on Energy 
            Resolution ........................................ 953
13.5 Homogeneous Calorimeters ................................. 957
     13.5.1 General Considerations ............................ 957
     13.5.2 Energy Measurement ................................ 960
13.6 Position Measurement ..................................... 967
13.7 Electron Hadron Separation ............................... 971
13.8 Hadronie Calorimetry ..................................... 972
     13.8.1 Intrinsic Properties of the Hadronie 
            Calorimeter ....................................... 972
       13.8.1.1 The ℮/h, ℮/π, h/mip and π/mip Ratios .......... 973
       13.8.1.2 Compensating Condition ℮/h = ℮/π = 1 and
                Linear Response ............................... 977
13.9 Methods to Achieve the Compensation Condition ............ 981
     13.9.1 Compensation Condition by Detecting Neutron 
            Energy ............................................ 982
     13.9.2 Compensation Condition by Tuning the ℮/mip Ratio .. 988
13.10 Compensation and Hadronie Energy Resolution ............. 998
     13.10.1 Non-Compensation Effects and the Ø(℮/π) Term .... 1004
     13.10.2 Determination of Effective Intrinsic 
             Resolutions ..................................... 1006
     13.10.3 Effect of Visible-Energy Losses on Calorimeter
             Energy Resolution ............................... 1008
13.11 Calorimetry at Very High Energy ........................ 1009
     13.11.1 General Considerations .......................... 1009
     13.11.2 Air Showers (AS) and Extensive Air Showers 
             (EAS) ........................................... 1013
     13.11.3 Electromagnetic Air Showers ..................... 1016
       13.11.3.1 Longitudinal Development .................... 1016
       13.11.3.2 Lateral Development ......................... 1017
     13.11.4 Hadronie Extensive Air Showers .................. 1019
     13.11.5 The Muon Component of Extensive Air Showers ..... 1021

14   Superheated Droplet (Bubble) Detectors and CDM Search ... 1023
14.1 The Superheated Droplet Detectors and their Operation ... 1026
     14.1.1 Neutron Response Measurement ..................... 1030
     14.1.2 a-Particle Response Measurement .................. 1034
     14.1.3 Radon Detection .................................. 1037
     14.1.4 Spontaneous Nucleation ........................... 1038
     14.1.5 Signal Measurement with Piezoelectric Sensors .... 1039
14.2 Search of Cold Dark Matter (CDM) ........................ 1040
     14.2.1 Calculation of the Neutralino-Nucleon Exclusion 
            Limits ........................................... 1041
       14.2.1.1 Spin-Independent or Coherent Cross Section ... 1042
       14.2.1.2 Spin-Dependent or Incoherent Cross Section ... 1045
       14.2.1.3 Calculation of (SP) and (Sn) in Nuclei ....... 1050
       14.2.1.4 Shell Models Calculation and Validation of 
                (Sp) and (Sn) ................................ 1055
     14.2.2 The PICASSO Experiment, an Example ............... 1055
     14.2.3 Status of Dark Matter Searches ................... 1057
14.3 Double Beta Decay ....................................... 1059

15   Medical Physics Applications ............................ 1065
15.1 Single Photon Emission Computed Tomography (SPECT) ...... 1067
15.2 Positron Emission Tomography (PET) ...................... 1082
     15.2.1  Use of Silicon in PET Imagers ................... 1088
       15.2.1.1 Example of Silicon Microstrip Detectors
                Used in Scanners ............................. 1088
       15.2.1.2 Example of Silicon Pad Detectors Used in
                Scanners ..................................... 1089
       15.2.1.3 Example of Silicon Pixel Detectors Used in
                Scanners ..................................... 1089
       15.2.1.4 Example of Silicon Photomultipliers (SiPM)
                Detectors Used in Scanners ................... 1091
15.3 X-Ray Medical Imaging ................................... 1095
     15.3.1 The Contrast ..................................... 1096
     15.3.2 The Modulation Transfer Function ................. 1096
     15.3.3 The Detective Quantum Efficiency ................. 1097
15.4 Magnetic Resonance Imaging (MRI) ........................ 1099
     15.4.1 Physical Basis of MRI ............................ 1099
     15.4.2 Forming an Image ................................. 1102
       15.4.2.1 Spin-Echo .................................... 1102
       15.4.2.2 Gradient-Echo ................................ 1103
       15.4.2.3 Space Positioning ............................ 1103
       15.4.2.4 Flows ........................................ 1104
       15.4.2.5 Functional MRI ............................... 1105

Appendix A  General Properties and Constants ................. 1107
     A.l Physical Constants .................................. 1108
     A.2 Periodic Table of Elements .......................... 1113
     A.3 Conversion Factors .................................. 1115
     A.4 Electronic Structure of the Elements ................ 1127
     A.5 Interpolating Parameter for 7eMott .................. 1130
     A.6 Isotopic Abundances ................................. 1148
     A.7 Commonly Used Radioactive Sources ................... 1150
     A.8 Free Electron Fermi Gas ............................. 1151
     A.9 Gamma-Ray Energy and Intensity Standards ............ 1154
     A.10 Screened Relativistic NIEL for Electrons and
         Protons in GaAs and Si media ........................ 1158
 
Appendix В  Mathematics and Statistics ....................... 1167
     B.l Probability and Statistics for Detection Systems .... 1168
     B.2 Table of Integrals .................................. 1180

Bibliography ................................................. 1183
Index ........................................................ 1261


Архив выставки новых поступлений | Отечественные поступления | Иностранные поступления | Сиглы
 

[О библиотеке | Академгородок | Новости | Выставки | Ресурсы | Библиография | Партнеры | ИнфоЛоция | Поиск]
  © 1997–2024 Отделение ГПНТБ СО РАН  

Документ изменен: Wed Feb 27 14:29:56 2019. Размер: 39,386 bytes.
Посещение N 1402 c 28.11.2017