Paulin F. Equilibrium states in negative curvature (Paris, 2015). - ОГЛАВЛЕНИЕ / CONTENTS
Навигация

Архив выставки новых поступлений | Отечественные поступления | Иностранные поступления | Сиглы
ОбложкаPaulin F. Equilibrium states in negative curvature / F.Paulin, M.Pollicott, B.Schapira. - Paris: Societe mathematique de France, 2015. - viii, 281 p. - (Astérisque; N 373). - Res. also French. - Bibliogr.: p.271-281. - Ind.: p.265-269. - ISBN 978-2-85629-818-3; ISSN 0303-1179
Шифр: (Pr 1207/373) 02

 

Место хранения: 02 | Отделение ГПНТБ СО РАН | Новосибирск

Оглавление / Contents
 
1  Introduction ................................................. 1
2  Background on negatively curved manifolds ................... 13
   2.1  Uniform local Holder-continuity ........................ 14
   2.2  Boundary at infinity, isometries and the Busemann
        cocycle ................................................ 15
   2.3  The geometry of the unit tangent bundle ................ 18
   2.4  Geodesic flow, (un)stable foliations and the
        Hamenstadt distances ................................... 21
   2.5  Some exercises in hyperbolic geometry .................. 25
   2.6  Pushing measures by branched covers .................... 28
3  A Patterson-Sullivan theory for Gibbs states ................ 31
   3.1  Potential functions and their periods .................. 31
   3.2  The Poincare series and the critical exponent of
        (Г, F) ................................................. 34
   3.3  The Gibbs cocycle of (Г, F) ............................ 39
   3.4  The potential gap of (Г, F) ............................ 44
   3.5  The crossratio of (Г, F) ............................... 48
   3.6  The Patterson densities of (Г, F) ...................... 51
   3.7  The Gibbs states of (Г, F) ............................. 57
   3.8  The Gibbs property of Gibbs states ..................... 59
   3.9  Conditional measures of Gibbs states on strong
        (un)stable leaves ...................................... 66
4  Critical exponent and Gurevich pressure ..................... 75
   4.1  Counting orbit points and periodic geodesies ........... 75
   4.2  Logarithmic growth of the orbital counting functions ... 77
   4.3  Equality between critical exponent and Gurevich
        pressure ............................................... 85
   4.4  Critical exponent of Schottky semigroups ............... 87
5  A Hopf-Tsuji-Sullivan-Roblin theorem for Gibbs states ...... 105
   5.1  Some geometric notation ............................... 105
   5.2  The Hopf-Tsuji-Sullivan-Roblin theorem for Gibbs
        states ................................................ 108
   5.3  Uniqueness of Patterson densities and of Gibbs
        states ................................................ 118
6  Thermodynamic formalism and equilibrium states ............. 123
   6.1  Measurable partitions and entropy ..................... 125
   6.2  Proof of the variational principle .................... 127
7  The Liouville measure as a Gibbs measure ................... 143
   7.1  The Holder-continuity of the (un)stable Jacobian ...... 146
   7.2  Absolute continuity of the strong unstable foliation .. 150
   7.3  The Liouville measure as an equilibrium state ......... 152
   7.4  The Liouville measure satisfies the Gibbs property .... 155
   7.5  Conservative Liouville measures are Gibbs measures .... 159
8  Finiteness and mixing of Gibbs states ...................... 165
   8.1  Babillot's mixing criterion for Gibbs states .......... 165
   8.2  A finiteness criterion for Gibbs states ............... 168
9  Growth and equidistributionof orbits and periods ........... 175
   9.1  Convergence of measures on the square product ......... 175
   9.2  Counting orbit points of discrete groups .............. 183
   9.3  Equidistribution and counting of periodic orbits of
        the geodesic flow ..................................... 185
   9.4  The case of infinite Gibbs measure .................... 196
10 The ergodic theory of the strong unstable foliation ........ 199
   10.1 Quasi-invariant transverse measures ................... 199
   10.2 Quasi-invariant measures on the space of horospheres .. 203
   10.3 Classification of quasi-invariant transverse
        measures for Wsu ...................................... 206
11 Gibbs states on Galois covers .............................. 233
   11.1 Improving Mohsen's shadow lemma ....................... 234
   11.2 The Fatou-Roblin radial convergence theorem ........... 238
   11.3 Characters and critical exponents ..................... 240
   11.4 Characters and Patterson densities .................... 246
   11.5 Characters and the Hopf-Tsuji-Sullivan-Roblin
        theorem ............................................... 249
   11.6 Galois covers and critical exponents .................. 253
   11.7 Classification of ergodic Patterson densities on
        nilpotent covers ...................................... 257
List of symbols ............................................... 261
Index ......................................................... 265
Bibliography .................................................. 271


Архив выставки новых поступлений | Отечественные поступления | Иностранные поступления | Сиглы
 

[О библиотеке | Академгородок | Новости | Выставки | Ресурсы | Библиография | Партнеры | ИнфоЛоция | Поиск]
  © 1997–2024 Отделение ГПНТБ СО РАН  

Документ изменен: Wed Feb 27 14:29:52 2019. Размер: 8,534 bytes.
Посещение N 817 c 07.11.2017