O-minimality and diophantine geometry (Cambridge, 2015). - ОГЛАВЛЕНИЕ / CONTENTS
Навигация

Архив выставки новых поступлений | Отечественные поступления | Иностранные поступления | Сиглы
ОбложкаO-minimality and diophantine geometry / ed. by G.O.Jones, A.J.Wilkie. - Cambridge: Cambridge university press, 2015. - xii, 221 p. - (London Mathematical Society lecture note series; 421). - Bibliogr. at the end of the chapters. - ISBN 978-1-107-46249-6
Шифр: (Pr 1123/421) 02

 

Место хранения: 02 | Отделение ГПНТБ СО РАН | Новосибирск

Оглавление / Contents
 
Preface ........................................................ xi

1  The Manin-Mumford Conjecture, an elliptic Curve, its
   Torsion Points & their Galois Orbits ......................... 1
   P. Habegger
   1  Overview .................................................. 1
   2  Elliptic Curves ........................................... 4
   3  Galois Orbits of Torsion Points and Heights ............... 9
   4  Application to the Manin-Mumford Conjecture .............. 27
   Appendix. An Inequality of Elkies for the Local
      Néron-Tate Height ........................................ 30
   
2  Rational points on definable sets ........................... 41
   A.J. Wilkie
   1  Introduction ............................................. 41
   2  Some semi-algebraic geometry ............................. 42
   3  O-minimal structures ([PS], [Dl]) ........................ 43
   4  Some 1-dimensional o-minimal theory ...................... 46
   5  Reparametrization (one variable case) .................... 47
   6  Proof of 1.1 in the 1-dimensional case ................... 53
   7  Some remarks on the proof of the general case of 1.1 ..... 58
   8  Some higher-dimensional o-minimal theory ................. 59
   9  Reparametrization (many variable case) ................... 61

3  Functional transcendence via o-minimality ................... 66
   Jonathan Pila
   1  Algebraic independence ................................... 66
   2  Transcendental numbers ................................... 67
   3  Schanuel's conjecture .................................... 69
   4  Differential fields ...................................... 70
   5  Ax-Schanuel .............................................. 71
   6  "Ax-Lindemann" ........................................... 75
   7  The modular function ..................................... 76
   8  Modular Schanuel Conjecture .............................. 79
   9  "Modular Ax-Schanuel" .................................... 80
   10 "Modular Ax-Lindemann" ................................... 82
   11 The general setting ...................................... 82
   12 Exponential Ax-Lindemann via o-minimality ................ 84
   13 Modular Ax-Lindemann via o-minimality .................... 87
   14 SC and CIT ............................................... 91
   15 Zilber-Pink .............................................. 94
   16 Zilber-Pink and Ax-Schanuel .............................. 95

4  Introduction to abelian varieties and the Ax-Lindemann-
   Weierstrass theorem ........................................ 100
   Martin Orr
   1  Introduction ............................................ 100
   2  Abelian varieties ....................................... 102
   3  Complex tori ............................................ 106
   4  Riemann forms and polarisations ......................... 107
   5  The moduli space of principally polarised abelian
      varieties ............................................... 111
   6  Complex multiplication .................................. 117
   7  The Ax-Lindemann-Weierstrass theorem for abelian
      varieties ............................................... 119
   8  Relationship between semialgebraic and complex
      algebraic sets .......................................... 121
   9  Proof of the Ax-Lindemann-Weierstrass theorem for
      abelian varieties ....................................... 123

5  The André-Oort conjecture via o-minimality ................. 129
   Christopher Daw
   1  Introduction ............................................ 129
   2  Hermitian symmetric domains ............................. 131
   3  Conjugacy classes ....................................... 133
   4  The Deligne torus ....................................... 135
   5  Hodge structures ........................................ 135
   6  Abelian varieties ....................................... 137
   7  The Siegel upper half-space ............................. 140
   8  Families of Hodge structures ............................ 140
   9  The algebraic group ..................................... 141
   10 Shimuradata ............................................. 141
   11 Congruence subgroups .................................... 143
   12 Adeles .................................................. 144
   13 Neatness ................................................ 144
   14 Shimura varieties ....................................... 145
   15 Complex structure ....................................... 145
   16 Algebraic structure ..................................... 146
   17 Special subvarieties .................................... 147
   18 Special points .......................................... 147
   19 Canonical model ......................................... 148
   20 The André-Oort conjecture ............................... 150
   21 Reductions .............................................. 150
   22 Galois orbits ........................................... 151
   23 Realisations ............................................ 152
   24 Heights ................................................. 152
   25 Definability ............................................ 154
   26 Ax-Lindemann-Weierstrass ................................ 154
   27 Pila-Wilkie ............................................. 155
   28 Final reduction ......................................... 155
   29 The Pila-Zannier strategy ............................... 155

6  Lectures on elimination theory for semialgebraic and
   subanalytic sets ........................................... 159
   A.J. Wilkie
   1  Model Theoretic Generalities ............................ 160
   2  The Real Field .......................................... 164
   3  Preliminary Remarks on Rings and Modules ................ 166
   4  Formal Power Series Rings ............................... 168
   5  Adically Normed Rings ................................... 169
   6  Formal Power Series in Many Variables ................... 172
   7  Convergent Power Series ................................. 176
   8  More on Adically Normed Rings and Modules ............... 181
   9  The Denef-van den Dries Paper ........................... 185

7  Relative Manin-Mumford for abelian varieties ............... 193
   D. Masser

8  Improving the bound in the Pila-Wilkie theorem
   for curves ................................................. 204
   G.O. Jones

9  Ax-Schanuel and o-minimality ............................... 216
   Jacob Tsimerman
   1  Interpreting Ax-Schanuel Geometrically .................. 216
   2  An o-minimality proof of Ax-Schanuel .................... 218


Архив выставки новых поступлений | Отечественные поступления | Иностранные поступления | Сиглы
 

[О библиотеке | Академгородок | Новости | Выставки | Ресурсы | Библиография | Партнеры | ИнфоЛоция | Поиск]
  © 1997–2024 Отделение ГПНТБ СО РАН  

Документ изменен: Wed Feb 27 14:29:52 2019. Размер: 10,658 bytes.
Посещение N 907 c 07.11.2017