Mallios A. Differential sheaves and connections: a natural approach to physical geometry (Singapore; Hackensack, 2016). - ОГЛАВЛЕНИЕ / CONTENTS
Навигация

Архив выставки новых поступлений | Отечественные поступления | Иностранные поступления | Сиглы
ОбложкаMallios A. Differential sheaves and connections: a natural approach to physical geometry / A.Mallios, E.Zafiris. - Singapore; Hackensack: World Scientific, 2016. - xv, 285 p. - (Series on concrete and applicable mathematics; vol.18). - Bibliogr.: p.265-278. - Ind.: p.279-285. - ISBN 978-981-4719-46-9; ISSN 1793-1142
Шифр: (И/В31-М21) 02

 

Место хранения: 02 | Отделение ГПНТБ СО РАН | Новосибирск

Оглавление / Contents
 
Preface ....................................................... vii
0    Prolegomena ................................................ 1
0.1  Exordium ................................................... 1
0.2  Basic Working Notions ...................................... 7
0.3  Observables and States .................................... 14
     0.3.1  Sheaf-Theoretic Observable Localization ............ 14
     0.3.2  Vector Sheaves of States and Local Gauge 
            Invariance ......................................... 20
     0.3.3  Exponential Short Exact Sequence ................... 23
0.4  Connections and Differential Analysis ..................... 24
     0.4.1  Kähler-de Rham Paradigm ............................ 24
     0.4.2  Kähler's Algebraic Extension Method ................ 26
     0.4.3  Connections and the Sheaf-Theoretic de Rham
            Complex ............................................ 30
     0.4.4  Local Forms of Connection and Curvature on Vector
            Sheaves of States .................................. 33
     0.4.5  Gauge Equivalence Classes of Differential Line
            Sheaves ............................................ 36
     0.4.6  Quantization Condition via Cohomology .............. 38
     0.4.7  Integrable Differential Line Sheaves ............... 42
     0.4.8  Quantum Unitary Rays ............................... 43
     0.4.9  Gauge Equivalence of Quantum Unitary Rays .......... 45
     0.4.10 Spectral Beams and Polarization Symmetry ........... 46
     0.4.11 Affine Structure of Spectral Beams ................. 49
     0.4.12 Monodromy Group and Integrable Phase Factors ....... 52
     0.4.13 Aharonov-Bohm Effect ............................... 54
     0.4.14 Holonomy of Spectral Beams ......................... 56
0.5  The Functorial Imperative ................................. 59
     0.5.1  Representable Functors and Natural 
            Transformations .................................... 59
     0.5.2  Adjoint Functors: Universale and Equivalence ....... 61
     0.5.3  Probes and Adjoints to Realization Functors ........ 66
     0.5.4  Horn-Tensor Adjunction ............................. 71
0.6  Grothendieck Topos Interpretation of the Horn-Tensor
     Adjunction ................................................ 75
     0.7  The Grothendieck Topology of Epimorphic Families ..... 81
     0.8  Unit and Counit of the Horn-Tensor Adjunction ........ 83

1    General Theory ............................................ 89
1.0  General Introduction ...................................... 89
1.1  Basic Assumptions of ADG (Abstract Differential 
     Geometry) ................................................. 91
1.2  Basic Framework ........................................... 95
     1.2.1  Adjoint Functors ................................... 98
     1.2.2  Natural Adjunction ................................ 101
1.3  Bohr's Correspondence .................................... 104
1.4  Functorial, Topos-Theoretic Mechanism of ADG ............. 114
1.5  Kähler Construction ...................................... 119
1.6  Elementary Particles in the Jargon of ADG ................ 121
1.7  Relational Aspect of Space, Again ........................ 125
1.8  Dynamical Dressing, Extension: Kähler Construction 
     (Contn'd) ................................................ 127
1.9  Adjunction, Least Action Principle ....................... 136
     1.9.1  Symmetry .......................................... 142
     1.9.2  More Thoughts on a Unified Field Theory ........... 148
1.10 Transformation Law of Potentials, in Terms of ADG ........ 152
     1.10.1 Lagrangian Perspective via "Abstract Geometric 
            Algebra" (AGA) .................................... 157
     1.10.2 More on the Fundamental "Adjunction" .............. 163
1.11 Characteristics of a Physical Law ........................ 165
1.12 Complementary Remarks .................................... 169
1.13 Epilogue ................................................. 171

2    Applications: Fundamental Adjunctions .................... 175
2.1  On Utiyama's Theme/Principle Through "fig.1-invariance" ...... 175
     2.1.1  Introduction ...................................... 175
     2.1.2  Utiyama's Theorem ................................. 176
     2.1.3  Utiyama's Theorem (Contn'd: Technical Details) .... 178
     2.1.4  Dynamical Analogue of the Fundamental Horn-
            Tensor Adjunction ................................. 184
2.2  "Affine Geometry" and "Quantum" .......................... 186
     2.2.1  Introduction ...................................... 186
     2.2.2  ADG vis-à-vis the "Infinitely Small"
            (:"Infinitesimal") ................................ 187
     2.2.3  Flow, and the "Quantum" ........................... 189
     2.2.4  Final Remarks ..................................... 194
2.3  Chasing Feynman .......................................... 195
     2.3.0  Prelude ........................................... 195
     2.3.1  Field Interactions ................................ 196
     2.3.2  A Non-Spatial Perspective. Whence, ADG ............ 199
     2.3.3  Relational Calculus ............................... 201
     2.3.4  "Feynman's Calculus", in Terms of ADG ............. 202
     2.3.5  The Exponential ................................... 205
     2.3.6  Schrödinger-Hamilton Adjunction ................... 207
     2.3.7  "Everything is Light" ............................. 216
2.4  Stone-von Neumann Adjunction ............................. 229
     2.4.1  Introduction ...................................... 229
     2.4.2  Physical Jargon ................................... 230
     2.4.3  Stone-von Neumann Theorem in Action ............... 231
     2.4.4  De Broglie-Einstein -Feynman Adjunction ........... 233
     2.4.5  "Invariance" ...................................... 238
     2.4.6  Conclusions ....................................... 249
2.5  Quantized Einstein's Equation ............................ 250
     2.5.1  Introduction ...................................... 250
     2.5.2  Einstein's Fundamental Equation in Vacuo .......... 250
     2.5.3  Einstein's Equation: The "Standard Model" ......... 253
2.6  The Essence of ADG ....................................... 254
     2.6.1  ADG Viewed, as an "Identity" ...................... 254
     2.6.2  Final Remarks ..................................... 257
2.7  Peroration ............................................... 258

Bibliography .................................................. 265
Index ......................................................... 279


Архив выставки новых поступлений | Отечественные поступления | Иностранные поступления | Сиглы
 

[О библиотеке | Академгородок | Новости | Выставки | Ресурсы | Библиография | Партнеры | ИнфоЛоция | Поиск]
  © 1997–2024 Отделение ГПНТБ СО РАН  

Документ изменен: Wed Feb 27 14:29:50 2019. Размер: 10,690 bytes.
Посещение N 1306 c 07.11.2017