Chang W.S.C. Principles of optics for engineers: diffraction and modal analysis (Cambridge, 2015). - ОГЛАВЛЕНИЕ / CONTENTS
Навигация

Архив выставки новых поступлений | Отечественные поступления | Иностранные поступления | Сиглы
ОбложкаChang W.S.C. Principles of optics for engineers: diffraction and modal analysis. - Cambridge: Cambridge university press, 2015. - x, 228 p.: ill. - Bibliogr. at the end of the art. - Ind.: p.225-228. - ISBN 978-1-107-07490-3
Шифр: (И/З.84-C45) 02

 

Место хранения: 02 | Отделение ГПНТБ СО РАН | Новосибирск

Оглавление / Contents
 
Introduction .................................................... 1

1    Optical plane waves in an unbounded medium ................. 4
1.1  Introduction to optical plane waves ........................ 4
     1.1.1  Plane waves and Maxwell's equations ................. 4
            (a)  The y-polarized plane wave ..................... 5
            (b)  The x-polarized plane wave ..................... 6
     1.1.2  Plane waves in an arbitrary direction ............... 7
     1.1.3  Evanescent plane waves .............................. 9
     1.1.4  Intensity and power ................................. 9
     1.1.5  Superposition and plane wave modes ................. 10
            (a)  Plane waves with circular polarization ........ 10
            (b)  Interference of coherent plane waves .......... 10
            (c)  Representation by summation of plane waves .... 11
     1.1.6  Representation of plane waves as optical rays ...... 13
1.2  Mirror reflection of plane waves .......................... 14
     1.2.1  Plane waves polarized perpendicular to the plane
            of incidence ....................................... 14
     1.2.2  Plane waves polarized in the plane of incidence .... 15
     1.2.3  Plane waves with arbitrary polarization ............ 15
     1.2.4  The intensity ...................................... 15
     1.2.5  Ray representation of reflection ................... 15
     1.2.6  Reflection from a spherical mirror ................. 16
1.3  Refraction of plane waves ................................. 17
     1.3.1  Plane waves polarized perpendicular to the plane
            of incidence ....................................... 17
     1.3.2  Plane waves polarized in the plane of incidence .... 19
     1.3.3  Properties of refracted and transmitted waves ...... 20
            (a)  Transmission and reflection at different
                 incident angles ............................... 20
            (b)  Total internal reflection ..................... 21
            (c)  Refraction and reflection of arbitrary
                 polarized waves ............................... 21
            (d)  Ray representation of refraction .............. 21
     1.3.4  Refraction and dispersion in prisms ................ 22
            (a)  Plane wave analysis of prisms ................. 22
            (b)  Ray analysis of prisms ........................ 24
            (c)  Thin prism represented as a transparent
                 layer with a varying index .................... 24
     1.3.5   Refraction in a lens .............................. 25
            (a)  Ray analysis of a thin lens ................... 25
            (b)  Thin lens represented as a transparency with
                 varying index ................................. 27
1.4  Geometrical relations in image formation .................. 28
1.5  Reflection and transmission at a grating .................. 30
1.6  Pulse propagation of plane waves .......................... 31
     Chapter summary ........................................... 32

2    Superposition of plane waves and applications ............. 34
2.1  Reflection and anti-reflection coatings ................... 34
2.2  Fabry-Perot resonance ..................................... 37
     2.2.1  Multiple reflections and Fabry-Perot resonance ..... 37
     2.2.2  Properties of Fabry-Perot resonance ................ 39
     2.2.3  Applications of the Fabry-Perot resonance .......... 41
            (a)  The Fabry-Perot scanning interferometer ....... 41
            (b)  Measurement of refractive properties of
                 materials ..................................... 42
            (c)  Resonators for filtering and time delay of
                 signals ....................................... 43
2.3  Reconstruction of propagating waves ....................... 43
2.4  Planar waveguide modes viewed as internal reflected
     plane waves ............................................... 46
     2.4.1  Plane waves incident from the cladding ............. 46
     2.4.2  Plane waves incident from the substrate ...........  48
            (a)  Incident plane waves with sin-1(nc/ns) < θS <
                 π/2 ........................................... 48
            (b)  Incident plane waves with 0 < θS <
                 sin-1(nc/ns) .................................. 48
     2.4.3  Plane waves incident within the waveguide:
            the planar waveguide modes ......................... 48
     2.4.4  The hollow dielectric waveguide mode ............... 50
     Chapter summary ........................................... 51

3    Scalar wave equation and diffraction of optical
     radiation ................................................. 53
3.1  The scalar wave equation .................................. 54
3.2  The solution of the scalar wave equation: Kirchhoff's
     diffraction integral ...................................... 55
     3.2.1  Kirchhoff's integral and the unit impulse
            response ........................................... 57
     3.2.2  Fresnel and Fraunhofer diffractions ................ 57
     3.2.3  Applications of diffraction integrals .............. 58
            (a)  Far field diffraction pattern of an aperture .. 58
            (b)  Far field radiation intensity pattern of
                 a lens ........................................ 60
            (c)  Fraunhofer diffraction in the focal plane
                 of a lens ..................................... 62
            (d)  The lens viewed as a transformation element ... 65
     3.2.4  Convolution theory and other mathematical
            techniques ......................................... 65
            (a)  The convolution relation ...................... 66
            (b)  Double slit diffraction ....................... 66
            (c)  Diffraction by an opaque disk ................. 67
            (d)  The Fresnel lens .............................. 67
            (e)  Spatial filtering ............................. 67
     Chapter summary ........................................... 71

4    Optical resonators and Gaussian beams ..................... 73
4.1  Integral equations for laser cavities ..................... 74
4.2 Modes in confocal cavities ................................. 75
     4.2.1  The simplified integral equation for confocal
            cavities ........................................... 75
     4.2.2  Analytical solutions of the modes in confocal
            cavities ........................................... 77
     4.2.3  Properties of resonant modes in confocal cavities .. 78
            (a)  The transverse field pattern .................. 78
            (b)  The resonance frequency ....................... 79
            (c)  A simplified analytical expression of the
                 field ......................................... 80
            (d)  The spot size ................................. 81
            (e)  The diffraction loss .......................... 81
            (f)  The line width of resonances .................. 82
     4.2.4  Radiation fields inside and outside the cavity ..... 83
            (a)  The far field pattern of the ТЕМ modes ........ 84
            (b)  A general expression for the TEMlm Gaussian
                 modes ......................................... 84
            (c)  An example to illustrate confocal cavity
                 modes ......................................... 85
4.3  Modes of non-confocal cavities ............................ 86
     4.3.1  Formation of a new cavity for known modes of
            confocal resonator ................................. 86
     4.3.2  Finding the virtual equivalent confocal resonator
            for a given set of reflectors ...................... 88
     4.3.3  A formal procedure to find the resonant modes in
            non-confocal cavities .............................. 89
     4.3.4  An example of resonant modes in a non-confocal
            cavity ............................................. 91
4.4  The propagation and transformation of Gaussian beams
     (the ABCD matrix) ......................................... 91
     4.4.1  A Gaussian mode as a solution of Maxwell's
            equation ........................................... 92
     4.4.2  The physical meaning of the terms in the Gaussian
            beam expression .................................... 94
     4.4.3  The analysis of Gaussian beam propagation by
            matrix transformation .............................. 95
     4.4.4  Gaussian beam passing through a lens ............... 97
     4.4.5  Gaussian beam passing through a spatial filter ..... 98
     4.4.6  Gaussian beam passing through a prism ............. 100
     4.4.7  Diffraction of a Gaussian beam by a grating ....... 102
     4.4.8  Focusing a Gaussian beam .......................... 103
     4.4.9  An example of Gaussian mode matching .............. 104
     4.4.10 Modes in complex cavities ......................... 105
     4.4.11 An example of the resonance mode in a ring
            cavity ............................................ 106
     Chapter summary .......................................... 107

5    Optical waveguides and fibers ............................ 109
5.1  Introduction to optical waveguides and fibers ............ 109
5.2  Electromagnetic analysis of modes in planar optical
     waveguides ............................................... 112
     5.2.1  The asymmetric planar waveguide ................... 112
     5.2.2  Equations for ТЕ and TM modes ..................... 112
5.3  ТЕ modes of planar waveguides ............................ 113
     5.3.1  ТЕ planar guided-wave modes ....................... 114
     5.3.2  ТЕ planar guided-wave modes in a symmetrical
            waveguide ......................................... 115
     5.3.3  The cut-off condition of ТЕ planar guided-wave
            modes ............................................. 117
     5.3.4  An example of ТЕ planar guided-wave modes ......... 118
     5.3.5  ТЕ planar substrate modes ......................... 119
     5.3.6  ТЕ planar air modes ............................... 119
5.4  TM modes of planar waveguides ............................ 121
     5.4.1  TM planar guided-wave modes ....................... 121
     5.4.2  TM planar guided-wave modes in a symmetrical
            waveguide ......................................... 122
     5.4.3  The cut-off condition of TM planar guided-wave
            modes ............................................. 123
     5.4.4  An example of TM planar guided-wave modes ......... 123
     5.4.5  TM planar substrate modes ......................... 124
     5.4.6  TM planar air modes ............................... 125
     5.4.7  Two practical considerations for TM modes ......... 126
5.5  Guided waves in planar waveguides ........................ 126
     5.5.1  The orthogonality of modes ........................ 126
     5.5.2  Guided waves propagating in the y-z plane ......... 127
     5.5.3  Convergent and divergent guided waves ............. 127
     5.5.4  Refraction of a planar guided wave ................ 128
     5.5.5  Focusing and collimation of planar guided waves ... 129
            (a)  The Luneberg lens ............................ 129
            (b)  The geodesic lens ............................ 129
            (c)  The Fresnel diffraction lens ................. 130
     5.5.6  Grating diffraction of planar guided waves ........ 131
     5.5.7  Excitation of planar guided-wave modes ............ 134
     5.5.8  Multi-layer planar waveguides ..................... 135
5.6  Channel waveguides ....................................... 135
     5.6.1  The effective index analysis ...................... 136
     5.6.2  An example of the effective index method .......... 140
     5.6.3  Channel waveguide modes of complex structures ..... 141
5.7  Guided-wave modes in optical fibers ...................... 142
     5.7.1  Guided-wave solutions of Maxwell's equations ...... 142
     5.7.2  Properties of the modes in fibers ................. 144
     5.7.3  Properties of optical fibers in applications ...... 145
     5.7.4  The cladding modes ................................ 146
     Chapter summary .......................................... 146

6    Guided-wave interactions ................................. 148
6.1  Review of properties of the modes in a waveguide ......... 149
6.2  Perturbation analysis .................................... 150
     6.2.1  Derivation of perturbation analysis ............... 150
     6.2.2  A simple application of perturbation analysis:
            perturbation by a nearby dielectric ............... 152
6.3  Coupled mode analysis .................................... 153
     6.3.1  Modes of two uncoupled parallel waveguides ........ 153
     6.3.2  Modes of two coupled waveguides ................... 154
     6.3.3  An example of coupled mode analysis: the grating
            reflection filter ................................. 155
     6.3.4  Another example of coupled mode analysis:
            the directional coupler ........................... 160
6.4  Super mode analysis ...................................... 163
6.5  Super modes of two parallel waveguides ................... 163
     6.5.1  Super modes of two well-separated waveguides ...... 164
     6.5.2  Super modes of two coupled waveguides ............. 164
     6.5.3  Super modes of two coupled identical waveguides ... 166
            (a)  Super modes obtained from the effective
                 index method ................................. 166
            (b)  Super modes obtained from coupled mode
                 analysis ..................................... 168
6.6  Directional coupling of two identical waveguides viewed
     as super modes ........................................... 169
6.7  Super mode analysis of the adiabatic Y-branch and Mach-
     Zehnder interferometer ................................... 170
     6.7.1  The adiabatic horn ................................ 170
     6.7.2  Super mode analysis of a symmetric Y-branch ....... 171
            (a)  A single-mode Y-branch ....................... 171
            (b)  A double-mode Y-branch ....................... 173
     6.7.3  Super mode analysis of the Mach-Zehnder
            interferometer .................................... 173
     Chapter summary .......................................... 175

7    Passive waveguide devices ................................ 176
7.1  Waveguide and fiber tapers ............................... 176
7.2  Power dividers ........................................... 176
     7.2.1  The Y-branch equal-power splitter ................. 177
     7.2.2  The directional coupler ........................... 177
     7.2.3  The multi-mode interference coupler ............... 178
     7.2.4  The Star coupler .................................. 182
7.3  The phased array channel waveguide frequency
     demultiplexer ............................................ 186
7.4  Wavelength filters and resonators ........................ 188
     7.4.1  Grating filters ................................... 188
     7.4.2  DBR resonators .................................... 189
     7.4.3  The ring resonator wavelength filter .............. 189
            (a)  Variable-gap directional coupling ............ 190
            (b)  The resonance condition of the couple ring ... 191
            (c)  Power transfer ............................... 192
            (d)  The free spectral range and the Q-factor ..... 192
     7.4.4  The ring resonator delay line ..................... 194
     Chapter summary .......................................... 195

8    Active opto-electronic guided-wave components ............ 196
8.1  The effect of electro-optical χ .......................... 197
     8.1.1  Electro-optic effects in plane waves .............. 197
     8.1.2  Electro-optic effects in waveguides at low
            frequencies ....................................... 198
            (a)  Effect of Δχ' ................................ 198
            (b)  Effect of Δχ" ................................ 199
8.2  The physical mechanisms to create Δχ ..................... 200
     8.2.1  Δχ' ............................................... 200
            (a)  The LiNbO3 waveguide ......................... 202
            (b)  The polymer waveguide ........................ 203
            (c)  The III-V compound semiconductor waveguide ... 203
     8.2.2  Δχ" in semiconductors ............................. 205
            (a)  Stimulated absorption and the bandgap ........ 205
            (b)  The quantum-confined Stark effect, QCSE ...... 206
8.3  Active opto-electronic devices ........................... 211
     8.3.1  The phase modulator ............................... 211
     8.3.2  The Mach-Zhender modulator ........................ 212
     8.3.3  The directional coupler modulator/switch .......... 213
     8.3.4  The electro-absorption modulator .................. 214
8.4  The traveling wave modulator ............................. 215
     Chapter summary .......................................... 217

Appendix ...................................................... 219
Index ......................................................... 225


Архив выставки новых поступлений | Отечественные поступления | Иностранные поступления | Сиглы
 

[О библиотеке | Академгородок | Новости | Выставки | Ресурсы | Библиография | Партнеры | ИнфоЛоция | Поиск]
  © 1997–2024 Отделение ГПНТБ СО РАН  

Документ изменен: Wed Feb 27 14:29:10 2019. Размер: 21,718 bytes.
Посещение N 1589 c 20.12.2016