Shell M.S. Thermodynamics and statistical mechanics: an integrated approach (Cambridge, 2015). - ОГЛАВЛЕНИЕ / CONTENTS
Навигация

Архив выставки новых поступлений | Отечественные поступления | Иностранные поступления | Сиглы
ОбложкаShell M.S. Thermodynamics and statistical mechanics: an integrated approach. - Cambridge: Cambridge university press, 2015. - xxii, 476 p.: ill. - (Cambridge series in chemical engineering). - Bibliogr. at the end of the chapters. - Ind.: p.470-476. - ISBN 978-1-107-65678-9
Шифр: (И/В31-S53) 02

 

Место хранения: 02 | Отделение ГПНТБ СО РАН | Новосибирск

Оглавление / Contents
 
Preface ........................................................ xv
Reference tables ............................................. xvii
Table A Counting and combinatorics formulae .................. xvii
Table В Useful integrals, expansions, and approximations ..... xvii
Table С Extensive thermodynamic potentials .................. xviii
Table D Intensive per-particle thermodynamic potentials for
        single-component systems ............................ xviii
Table E Thermodynamic calculus manipulations .................. xix
Table F Measurable quantities .................................. xx
Table G Common single-component statistical-mechanical
        ensembles ............................................. xxi
Table H Fundamental physical constants ....................... xxii
1  Introduction and guide for this text ......................... 1
2  Equilibrium and entropy ...................................... 6
   2.1  What is equilibrium? .................................... 6
   2.2  Classical thermodynamics ................................ 7
   2.3  Statistical mechanics .................................. 11
   2.4  Comparison of classical thermodynamics and
        statistical mechanics .................................. 14
   2.5  Combinatorial approaches to counting ................... 15
   Problems .................................................... 18
3  Energy and how the microscopic world works .................. 21
   3.1  Quantum theory ......................................... 21
   3.2  The classical picture .................................. 25
   3.3  Classical microstates illustrated with the ideal gas ... 29
   3.4  Ranges of microscopic interactions and scaling with
        system size ............................................ 32
   3.5  From microscopic to macroscopic ........................ 34
   3.6  Simple and lattice molecular models .................... 37
   3.7  A simple and widely relevant example: the two-state
        system ................................................. 38
   Problems .................................................... 41
4  Entropy and how the macroscopic world works ................. 50
   4.1  Microstate probabilities ............................... 50
   4.2  The principle of equal a priori probabilities .......... 51
   4.3  Ensemble averages and time averages in isolated
        systems ................................................ 54
   4.4  Thermal equilibrium upon energy exchange ............... 58
   4.5  General forms for equilibrium and the principle of
        maximum entropy ........................................ 65
   4.6  The second law and internal constraints ................ 69
   4.7  Equivalence with the energy-minimum principle .......... 70
   4.8  Ensemble averages and Liouville's theorem in
        classical systems ...................................... 72
   Problems .................................................... 75
5  The fundamental equation .................................... 82
   5.1  Equilibrium and derivatives of the entropy ............. 82
   5.2  Differential and integrated versions of the
        fundamental equations .................................. 83
   5.3  Intensive forms and state functions .................... 85
   Problems .................................................... 91
6  The first law and reversibility ............................. 93
   6.1  The first law for processes in closed systems .......... 93
   6.2  The physical interpretation of work .................... 95
   6.3  A classic example involving work and heat .............. 97
   6.4  Special processes and relationships to the
        fundamental equation ................................... 98
   6.5  Baths as idealized environments ....................... 101
   6.6  Types of processes and implications from the second
        law ................................................... 101
   6.7  Heat engines .......................................... 105
   6.8  Thermodynamics of open, steady-flow systems ........... 107
   Problems ................................................... 114
7  Legendre transforms and other potentials ................... 123
   7.1  New thermodynamic potentials from baths ............... 123
   7.2  Constant-temperature coupling to an energy bath ....... 123
   7.3  Complete thermodynamic information and natural
        variables ............................................. 126
   7.4  Legendre transforms: mathematical convention .......... 128
   7.5  Legendre transforms: thermodynamic convention ......... 130
   7.6  The Gibbs free energy ................................. 132
   7.7  Physical rationale for Legendre transforms ............ 133
   7.8  Extremum principles with internal constraints ......... 134
   7.9  The enthalpy and other potentials ..................... 136
   7.10 Integrated and derivative relations ................... 137
   7.11 Multicomponent and intensive versions ................. 141
   7.12 Summary and look ahead ................................ 142
   Problems ................................................... 143
8  Maxwell relations and measurable properties ................ 149
   8.1  Maxwell relations ..................................... 149
   8.2  Measurable quantities ................................. 151
   8.3  General considerations for calculus manipulations ..... 154
   Problems ................................................... 156
9  Gases ...................................................... 161
   9.1  Microstates in monatomic ideal gases .................. 161
   9.2  Thermodynamic properties of ideal gases ............... 165
   9.3  Ideal gas mixtures .................................... 167
   9.4  Nonideal or "imperfect" gases ......................... 170
   9.5  Nonideal gas mixtures ................................. 171
   Problems ................................................... 172
10 Phase equilibrium .......................................... 176
   10.1 Conditions for phase equilibrium ...................... 176
   10.2 Implications for phase diagrams ....................... 181
   10.3 Other thermodynamic behaviors at a phase transition ... 184
   10.4 Types of phase equilibrium ............................ 187
   10.5 Microscopic view of phase equilibrium ................. 188
   10.6 Order parameters and general features of phase
        equilibrium ........................................... 194
   Problems ................................................... 195
11 Stability .................................................. 201
   11.1 Metastability ......................................... 201
   11.2 Common tangent line perspective on phase equilibrium .. 202
   11.3 Limits of metastability ............................... 205
   11.4 Generalized stability criteria ........................ 209
   Problems ................................................... 212
12 Solutions: fundamentals .................................... 217
   12.1 Ideal solutions ....................................... 217
   12.2 Ideal vapor-liquid equilibrium and Raoult's law ....... 220
   12.3 Boiling-point elevation ............................... 221
   12.4 Freezing-point depression ............................. 224
   12.5 Osmotic pressure ...................................... 224
   12.6 Binary mixing with interactions ....................... 227
   12.7 Nonideal solutions in general ......................... 230
   12.8 The Gibbs-Duhem relation .............................. 231
   12.9 Partial molar quantities .............................. 233
   Problems ................................................... 236
13 Solutions: advanced and special cases ...................... 246
   13.1 Phenomenology of multicomponent vapor-liquid
        equilibrium ........................................... 246
   13.2 Models of multicomponent vapor-liquid equilibrium ..... 248
   13.3 Bubble- and dew-point calculations at constant
        pressure .............................................. 250
   13.4 Flash calculations at constant pressure and
        temperature ........................................... 252
   13.5 Relative volatility formulation ....................... 254
   13.6 Nonideal mixtures ..................................... 255
   13.7 Constraints along mixture vapor-liquid phase
        boundaries ............................................ 258
   13.8 Phase equilibrium in polymer solutions ................ 260
   13.9 Strong electrolyte solutions .......................... 266
   Problems ................................................... 274
14 Solids ..................................................... 280
   14.1 General properties of solids .......................... 280
   14.2 Solid-liquid equilibrium in binary mixtures ........... 281
   14.3 Solid-liquid equilibrium in multicomponent solutions .. 287
   14.4 A microscopic view of perfect crystals ................ 290
   14.5 The Einstein model of perfect crystals ................ 292
   14.6 The Debye model of perfect crystals ................... 296
   Problems ................................................... 300
15 The third law .............................................. 305
   15.1 Absolute entropies and absolute zero .................. 305
   15.2 Finite entropies and heat capacities at absolute
        zero .................................................. 309
   15.3 Entropy differences at absolute zero .................. 310
   15.4 Attainability of absolute zero ........................ 312
   Problems ................................................... 315
16 The canonical partition function ........................... 319
   16.1 A review of basic statistical-mechanical concepts ..... 319
   16.2 Microscopic equilibrium in isolated systems ........... 320
   16.3 Microscopic equilibrium at constant temperature ....... 321
   16.4 Microstates and degrees of freedom .................... 328
   16.5 The canonical partition function for independent
        molecules ............................................. 332
   Problems ................................................... 335
17 Fluctuations ............................................... 343
   17.1 Distributions in the canonical ensemble ............... 343
   17.2 The canonical distribution of energies ................ 345
   17.3 Magnitude of energy fluctuations ...................... 350
   Problems ................................................... 353
18 Statistical mechanics of classical systems ................. 357
   18.1 The classical canonical partition function ............ 357
   18.2 Microstate probabilities for continuous degrees of
        freedom ............................................... 361
   18.3 The Maxwell-Boltzmann distribution .................... 368
   18.4 The pressure in the canonical ensemble ................ 372
   18.5 The classical microcanonical partition function ....... 375
   Problems ................................................... 376
19 Other ensembles ............................................ 387
   19.1 The isothermal-isobaric ensemble ...................... 387
   19.2 The grand canonical ensemble .......................... 392
   19.3 Generalities and the Gibbs entropy formula ............ 396
   Problems ................................................... 397
20 Reaction equilibrium ....................................... 404
   20.1 A review of basic reaction concepts ................... 404
   20.2 Reaction equilibrium at the macroscopic level ......... 405
   20.3 Reactions involving ideal gases ....................... 407
   20.4 Reactions involving ideal solutions ................... 409
   20.5 Temperature and pressure dependence of Keq ............ 410
   20.6 Reaction equilibrium at the microscopic level ......... 412
   20.7 Fluctuations .......................................... 414
   Problems ................................................... 417
21 Reaction coordinates and rates ............................. 425
   21.1 Kinetics from statistical thermodynamics .............. 425
   21.2 Macroscopic considerations for reaction rates ......... 426
   21.3 Microscopic origins of rate coefficients .............. 428
   21.4 General considerations for rates of rare-event
        molecular processes ................................... 438
   Problems ................................................... 441
22 Molecular simulation methods ............................... 444
   22.1 Basic elements of classical simulation models ......... 445
   22.2 Molecular-dynamics simulation methods ................. 450
   22.3 Computing properties .................................. 453
   22.4 Simulations of bulk phases ............................ 457
   22.5 Monte Carlo simulation methods ........................ 459
Problems ...................................................... 464

Index ......................................................... 470


Архив выставки новых поступлений | Отечественные поступления | Иностранные поступления | Сиглы
 

[О библиотеке | Академгородок | Новости | Выставки | Ресурсы | Библиография | Партнеры | ИнфоЛоция | Поиск]
  © 1997–2024 Отделение ГПНТБ СО РАН  

Документ изменен: Wed Feb 27 14:29:00 2019. Размер: 17,170 bytes.
Посещение N 1087 c 11.10.2016