Ranzi G. Structural analysis: principles, methods and modelling (Boca Raton, 2015). - ОГЛАВЛЕНИЕ / CONTENTS
Навигация

Архив выставки новых поступлений | Отечественные поступления | Иностранные поступления | Сиглы
ОбложкаRanzi G. Structural analysis: principles, methods and modelling / G.Ranzi, R.I.Gilbert. - Boca Raton: CRC press/Taylor & Francis, 2015. - xiii, 562 p.: ill. - Ind.: p.557-562. - ISBN 978-0-415-52644-9
Шифр: (И/Н-R20) 02

 

Место хранения: 02 | Отделение ГПНТБ СО РАН | Новосибирск

Оглавление / Contents
 
Preface ........................................................ xi
Acknowledgments .............................................. xiii

1  Introduction ................................................. 1
   1.1  Structural analysis and design .......................... 1
   1.2  Structural idealisation ................................. 2
   1.3  Structural members and elements ......................... 2
   1.4  Structural systems ...................................... 6
   1.5  Types of loads .......................................... 8
   1.6  Supports for structures ................................ 10
2  Statics of structures: Equilibrium and support reactions .... 13
   2.1  Introduction ........................................... 13
   2.2  Coordinate systems ..................................... 13
   2.3  Force .................................................. 15
   2.4  Moment of a force ...................................... 16
   2.5  Resultant force and moment ............................. 19
   2.6  Reactions .............................................. 25
   2.7  Free-body diagram ...................................... 25
   2.8  Equilibrium equations for planar structures ............ 28
   2.9  External statical determinacy and stability ............ 29
        2.9.1  Internally stable structures .................... 30
        2.9.2  Internally unstable structures .................. 31
   2.10 Determination of reactions ............................. 36
   2.11 Equilibrium and reactions in three-dimensional
        structures ............................................. 40
   Problems .................................................... 43
3  Internal actions of beams and frames ........................ 55
   3.1  Introduction ........................................... 55
   3.2  Internal actions at a cross-section .................... 55
   3.3  Sign convention of internal actions .................... 57
   3.4  Determination of internal actions and statical
        determinacy ............................................ 60
   3.5  Axial force, shear force and bending moment diagrams ... 64
        Problems ............................................... 75
4  Statically determinate trusses .............................. 83
   4.1  Introduction ........................................... 83
   4.2  Assumptions for truss analysis ......................... 84
   4.3  Sign convention and notation ........................... 85
   4.4  An introduction to the method of joints ................ 86
   4.5  Method of joints in matrix form ........................ 92
   4.6  Method of sections .................................... 100
   4.7  Statical indeterminacy and stability of trusses ....... 105
   4.8  Deformation of trusses ................................ 111
   4.9  Trusses with loaded members ........................... 115
   4.10 Space trusses ......................................... 118
   Problems ................................................... 127
5  Euler-Bernoulli beam model ................................. 135
   5.1  Introduction .......................................... 135
   5.2  Equilibrium of a small length of beam ................. 135
   5.3  Kinematic (or strain-displacement) equations .......... 137
        5.3.1  Axial deformations and displacements ........... 137
        5.3.2  Bending (flexural) deformations and
               displacements .................................. 139
        5.3.3  Combining axial and flexural deformations ...... 141
   5.4  Constitutive equations ................................ 141
   5.5  Method of double integration .......................... 149
   5.6  Governing differential equations (as a function of
        displacements) ........................................ 152
        5.6.1  Boundary conditions for the axial
               displacement ................................... 154
        5.6.2  Boundary conditions for the vertical
               displacement ................................... 154
   5.7  Relationship between bending moment, shear force and
        member loading ........................................ 163
   Problems ................................................... 176
6  Slope-deflection methods ................................... 183
   6.1  Introduction .......................................... 183
   6.2  Method of double integration with step functions ...... 184
   6.3  Moment-area method .................................... 186
   6.4  Conjugate beam method ................................. 195
   6.5  The slope-deflection equations ........................ 204
        6.5.1  Sign convention for support moments and
               rotations ...................................... 204
        6.5.2  Rotation at support А, θА ...................... 205
        6.5.3  Rotation at support В, θB ...................... 206
        6.5.4  Fixed-end moments caused by applied loads ...... 206
        6.5.5  Support settlement Δ ........................... 207
        6.5.6  Slope-deflection equations ..................... 208
        6.5.7  Frames without sidesway ........................ 213
        6.5.8  Frames with sidesway ........................... 217
               Problems ....................................... 222
7  Work-energy methods ........................................ 229
   7.1  Strain energy ......................................... 229
        7.1.1  Axially loaded members ......................... 230
        7.1.2  Beams in bending ............................... 230
   7.2  The work theorem ...................................... 233
   7.3  Virtual work .......................................... 236
   7.4  Virtual work applied to trusses ....................... 236
        7.4.1  Principle of virtual forces .................... 236
        7.4.2  Principle of virtual displacements ............. 240
        7.4.3  Transfer coefficients .......................... 241
   7.5  Virtual work applied to beams and frames .............. 242
        7.5.1  Principle of virtual forces .................... 243
        7.5.2  Principle of virtual displacements ............. 247
   7.6  Castigliano's theorem ................................. 250
        7.6.1  Application to trusses ......................... 251
        7.6.2  Application to beams and frames ................ 255
   Problems ................................................... 258
8  The force method ........................................... 263
   8.1  Introduction .......................................... 263
   8.2  The force method applied to trusses ................... 264
        8.2.1  Determination of member forces in an n-fold
               indeterminate truss ............................ 264
        8.2.2  Determination of joint displacements ........... 276
   8.3  The force method applied to beams and frames .......... 279
        8.3.1  Determination of internal actions .............. 279
        8.3.2  Flexibility coefficients and transfer
               functions ...................................... 286
        8.3.3  Deformations of statically indeterminate
               beams and frames ............................... 291
               Problems ....................................... 293
9  Moment distribution ........................................ 299
   9.1  Introduction .......................................... 299
   9.2  Basic concepts ........................................ 300
   9.3  Continuous beams ...................................... 302
        9.3.1  Basic approach ................................. 302
        9.3.2  Modification for an end span with a pinned
               support ........................................ 307
   9.4  Frames without sidesway ............................... 313
   9.5  Frames with sidesway .................................. 315
        Problems .............................................. 326
10 Truss analysis using the stiffness method .................. 331
   10.1 Overview of the stiffness method ...................... 331
   10.2 Sign convention, notation, coordinate systems and
        degrees of freedom .................................... 331
        10.2.1 Sign convention and notation ................... 331
        10.2.2 Local and global coordinate systems ............ 331
        10.2.3 Degrees of freedom of the structure ............ 333
   10.3 Derivation of the stiffness matrix in local
        coordinates ........................................... 333
   10.4 Transformation between local and global coordinate
        systems ............................................... 338
        10.4.1 Transformation matrix for vectors .............. 338
        10.4.2 Transformation matrix for the truss element .... 342
   10.5 Truss element in global coordinates ................... 345
   10.6 Assembling ............................................ 347
   10.7 Solution procedure .................................... 351
   10.8 Calculation of internal actions ....................... 352
   10.9 Nodal coordinates ..................................... 356
   10.10 Space truss .......................................... 362
   Problems ................................................... 365
11 Beam analysis using the stiffness method ................... 369
   11.1 The beam element ...................................... 369
   11.2 Derivation of the stiffness matrix .................... 371
   11.3 Beam element in global coordinates .................... 374
   11.4 Assembling of the stiffness elements .................. 375
   11.5 Member loads .......................................... 375
   11.6 Solution procedure and post-processing ................ 378
   Problems ................................................... 392
12 Frame analysis using the stiffness method .................. 397
   12.1 The frame element ..................................... 397
   12.2 Derivation of the element stiffness matrix ............ 397
   12.3 Transformation between local and global coordinate
        systems ............................................... 400
        12.3.1 Transformation matrix for vectors .............. 400
        12.3.2 Transformation matrix for the frame element .... 401
   12.4 Frame element in global coordinates ................... 403
   12.5 Member loads .......................................... 403
   12.6 Assembling, solution and post-processing .............. 405
   Problems ................................................... 420
13 Introduction to the finite element method .................. 425
   13.1 Introduction .......................................... 425
   13.2 Euler-Bernoulli beam model ............................ 425
        13.2.1 Kinematic model ................................ 426
        13.2.2 Weak form ...................................... 428
        13.2.3 Finite element formulation ..................... 430
        13.2.4 Solution procedure ............................. 436
        13.2.5 Post-processing ................................ 437
        13.2.6 Remarks on the consistency requirements for
               finite elements ................................ 437
   13.3 Timoshenko beam model ................................. 445
        13.3.1 Kinematic model ................................ 445
        13.3.2 Finite element formulation ..................... 447
               Problems ....................................... 457
14 Introduction to the structural stability of columns ........ 459
   14.1 Introduction .......................................... 459
   14.2 Assumptions ........................................... 459
   14.3 Critical load from equilibrium ........................ 462
   14.4 Critical load from potential energy ................... 465
   14.5 Buckling of an elastic column ......................... 469
   14.6 Effective buckling length ............................. 479
   14.7 Buckling stresses ..................................... 480
   14.8 Imperfections in columns .............................. 485
   Problems ................................................... 487
15 Introduction to nonlinear analysis ......................... 489
   15.1 Introduction .......................................... 489
   15.2 Nonlinear material properties ......................... 489
   15.3 Illustrative examples ................................. 492
        15.3.1 Axially loaded members ......................... 492
        15.3.2 Beams in bending ............................... 494
   15.4 Nonlinear analysis using the Newton-Raphson method .... 502
        15.4.1 Overview of the Newton-Raphson method .......... 502
        15.4.2 Cross-sectional analysis using the Newton-
               Rapbson method ................................. 504
   15.5 Finite element analysis using the Newton-Rapbson
        method ................................................ 516
   Problems ................................................... 527
Appendix A: Properties of plane sections ...................... 529
Appendix B: Fixed- end moments ................................ 543
Appendix C: Matrix algebra .................................... 545
Index ......................................................... 557


Архив выставки новых поступлений | Отечественные поступления | Иностранные поступления | Сиглы
 

[О библиотеке | Академгородок | Новости | Выставки | Ресурсы | Библиография | Партнеры | ИнфоЛоция | Поиск]
  © 1997–2024 Отделение ГПНТБ СО РАН  

Документ изменен: Wed Feb 27 14:29:00 2019. Размер: 17,377 bytes.
Посещение N 1244 c 11.10.2016