Feitelson D.G. Workload modeling for computer systems performance evaluation (New York, 2015). - ОГЛАВЛЕНИЕ / CONTENTS
Навигация

Архив выставки новых поступлений | Отечественные поступления | Иностранные поступления | Сиглы
ОбложкаFeitelson D.G. Workload modeling for computer systems performance evaluation. - New York: Cambridge university press, 2015. - xv, 551 p.: ill. - Bibliogr.: p.501-540. - Ind.: p.541-551. - ISBN 978-1-107-07823-9
Шифр: (И/З.973.2-F35) 02

 

Место хранения: 02 | Отделение ГПНТБ СО РАН | Новосибирск

Оглавление / Contents
 
Preface ...................................................... xiii

1    Introduction ............................................... 1
1.1  The Importance of Workloads ................................ 2
1.2  Types of Workloads ......................................... 5
     1.2.1  Workloads in Different Domains ...................... 6
     1.2.2  Dynamic vs. Static Workloads ........................ 7
     1.2.3  Benchmarks .......................................... 8
1.3  Workload Modeling ......................................... 10
     1.3.1  What It Is ......................................... 10
     1.3.2  Why Do It? ......................................... 11
     1.3.3  How It Is Done ..................................... 16
1.4  Roadmap ................................................... 21

2    Workload Data ............................................. 22
2.1  Data Sources .............................................. 22
     2.1.1  Using Available Logs ............................... 22
     2.1.2  Active Data Collection ............................. 29
2.2  Data Usability ............................................ 34
     2.2.1  Representativeness ................................. 34
     2.2.2  Stationarity ....................................... 42
2.3  Data Filtering and Cleaning ............................... 46
     2.3.1  Noise and Errors ................................... 47
     2.3.2  Multiclass Workloads ............................... 50
     2.3.3  Anomalous Behavior and Robots ...................... 52
     2.3.4  Workload Flurries and Flash Crowds ................. 56
     2.3.5  Identifying Noise and Anomalies .................... 60
2.4  Educated Guessing ......................................... 63
2.5  Sharing Data .............................................. 64
     2.5.1  Data Formats ....................................... 66
     2.5.2  Data Volume ........................................ 70
     2.5.3  Privacy ............................................ 71

3    Statistical Distributions ................................. 73
3.1  Describing a Distribution ................................. 75
     3.1.1  Histograms, pdfs, and CDFs ......................... 76
     3.1.2  Central Tendency ................................... 86
     3.1.3  Dispersion ......................................... 90
     3.1.4  Moments and Order Statistics ....................... 95
     3.1.5  Focus on Skew ...................................... 98
3.2  Some Specific Distributions .............................. 101
     3.2.1  The Exponential Distribution ...................... 102
     3.2.2  Phase-Type Distributions .......................... 106
     3.2.3  The Hyper-Exponential Distribution ................ 107
     3.2.4  The Erlang Distribution ........................... 109
     3.2.5  The Hyper-Erlang Distribution ..................... 111
     3.2.6  Other Phase-Type Distributions .................... 112
     3.2.7  The Normal Distribution ........................... 114
     3.2.8  The Lognormal Distribution ........................ 115
     3.2.9  The Gamma Distribution ............................ 118
     3.2.10 The Weibull Distribution .......................... 119
     3.2.11 The Pareto Distribution ........................... 120
     3.2.12 The Zipf Distribution ............................. 123
     3.2.13 Do It Yourself .................................... 128

4    Fitting Distributions to Data ............................ 130
4.1  Approaches to Fitting Distributions ...................... 131
4.2  Parameter Estimation for a Single Distribution ........... 131
     4.2.1  Justification ..................................... 132
     4.2.2  The Method of Moments ............................. 133
     4.2.3  The Maximum Likelihood Method ..................... 134
     4.2.4  Estimation for Specific Distributions ............. 136
     4.2.5  Sensitivity to Outliers ........................... 138
     4.2.6  Variations in Shape ............................... 140
4.3  Parameter Estimation for a Mixture of Distributions ...... 141
     4.3.1  Examples of Mixtures .............................. 141
     4.3.2  The Expectation-Maximization Algorithm ............ 142
4.4  Re-Creating the Shape of a Distribution .................. 145
     4.4.1  Using an Empirical Distribution ................... 145
     4.4.2  Modal Distributions ............................... 148
     4.4.3  Constructing a Hyper-Exponential Tail ............. 151
4.5  Tests for Goodness of Fit ................................ 155
     4.5.1  Using Q-Q Plots ................................... 155
     4.5.2  The Kolmogorov-Smirnov Test ....................... 159
     4.5.3  The Anderson-Darling Test ......................... 160
     4.5.4  The X2 Method ..................................... 161
4.6  Software Packages for Distribution Fitting ............... 161

5    Heavy Tails .............................................. 163
5.1  The Definition of Heavy Tails ............................ 164
     5.1.1  Power-Law Tails ................................... 164
     5.1.2  Properties of Power Laws .......................... 165
     5.1.3  Alternative Definitions ........................... 172
5.2  The Importance of Heavy Tails ............................ 175
     5.2.1  Conditional Expectation ........................... 175
     5.2.2  Mass-Count Disparity .............................. 178
5.3  Testing for Heavy Tails .................................. 185
5.4  Modeling Heavy Tails ..................................... 193
     5.4.1  Estimating the Parameters of a Power-Law Tail ..... 193
     5.4.2  Generalization and Extrapolation .................. 200
     5.4.3  Generative Models ................................. 206

6    Correlations in Workloads ................................ 213
6.1  Types of Correlation ..................................... 213
6.2  Spatial and Temporal Locality ............................ 215
     6.2.1  Definitions ....................................... 215
     6.2.2  Statistical Measures of Locality .................. 217
     6.2.3  The Stack Distance and Temporal Locality .......... 218
     6.2.4  Working Sets and Spatial Locality ................. 222
     6.2.5  Measuring Skewed Distributions and Popularity ..... 223
     6.2.6  Modeling Locality ................................. 223
     6.2.7  System Effects on Locality ........................ 231
6.3  Locality of Sampling ..................................... 231
     6.3.1  Examples and Visualization ........................ 232
     6.3.2  Quantification .................................... 235
     6.3.3  Properties ........................................ 240
     6.3.4  Importance ........................................ 240
     6.3.5  Modeling .......................................... 242
6.4  Cross-Correlation ........................................ 245
     6.4.1  Joint Distributions and Scatterplots .............. 245
     6.4.2  The Correlation Coefficient and Linear
            Regression ........................................ 249
     6.4.3  Distributional Correlation ........................ 258
     6.4.4  Modeling Correlations by Clustering ............... 262
     6.4.5  Modeling Correlations with Distributions .......... 269
     6.4.6  Dynamic Workloads vs. Snapshots ................... 270
6.5  Correlation with Time .................................... 272
     6.5.1  Periodicity and the Diurnal Cycle ................. 273
     6.5.2  Trends ............................................ 280

7    Self-Similarity and Long-Range Dependence ................ 283
7.1  Poisson Arrivals ......................................... 284
     7.1.1 The Poisson Process ................................ 284
     7.1.2  Nonhomogeneous Poisson Process .................... 285
     7.1.3  Batch Arrivals .................................... 285
7.2  The Phenomenon of Self-Similarity ........................ 287
     7.2.1  Examples of Self-Similarity ....................... 287
     7.2.2  Self-Similarity and Long-Range Dependence ......... 289
     7.2.3  The Importance of Self-Similarity ................. 291
     7.2.4  Focus on Scaling .................................. 292
7.3  Mathematical Definitions ................................. 294
     7.3.1  Data Manipulations ................................ 295
     7.3.2  Exact Self-Similarity ............................. 297
     7.3.3  Focus on the Covariance ........................... 299
     7.3.4  Long-Range Dependence ............................. 300
     7.3.5  Asymptotic Second-Order Self-Similarity ........... 303
     7.3.6  The Hurst Parameter and Random Walks .............. 306
7.4  Measuring Self-Similarity ................................ 309
     7.4.1  Testing for a Poisson Process ..................... 309
     7.4.2  The Rescaled Range Method ......................... 310
     7.4.3  The Variance Time Method .......................... 316
     7.4.4  Measuring Long-Range Dependence Directly .......... 318
     7.4.5  Using Wavelets and Logscale Diagrams .............. 319
     7.4.6  Spectral Methods: The Periodogram and Whittle
            Estimator ......................................... 325
     7.4.7  Comparison of Results ............................. 337
     7.4.8  Validation ........................................ 338
     7.4.9  Software for Analyzing Self-Similarity ............ 339
7.5  Modeling Self-Similarity ................................. 340
     7.5.1  Classical Long-Range Dependent Models ............. 340
     7.5.2  Multiscale Wavelet-Based Construction ............. 345
     7.5.3  Bias Models ....................................... 347
     7.5.4  The M/G/oo Queueing Model ......................... 350
     7.5.5  Merged On-Off Processes ........................... 353
7.6  More Complex Scaling Behavior ............................ 356

8    Hierarchical Generative Models ........................... 357
8.1  Locality of Sampling and Users ........................... 358
8.2  Hierarchical Workload Models ............................. 359
     8.2.1  Hidden Markov Models .............................. 359
     8.2.2  Motivation for User-Based Models .................. 362
     8.2.3  The Three-Level User-Based Model .................. 366
     8.2.4  Other Hierarchical Models ......................... 367
8.3  User-Based Modeling ...................................... 370
     8.3.1  Modeling the User Population ...................... 370
     8.3.2  Modeling User Sessions ............................ 374
     8.3.3  Modeling User Activity within Sessions ............ 383
     8.3.4  User Resampling ................................... 389
8.4  Performance Feedback ..................................... 391

9    Case Studies ............................................. 399
9.1  Human User Behavior ...................................... 399
     9.1.1  Sessions and Job Arrivals ......................... 400
     9.1.2  Interactivity and Think Times ..................... 401
     9.1.3  Daily Activity Cycle .............................. 403
     9.1.4  Patience .......................................... 405
     9.1.5  Mobility .......................................... 406
     9.1.6  Runtime Estimates ................................. 407
9.2  Desktop and Workstation Workloads ........................ 410
     9.2.1  Process Runtimes .................................. 410
     9.2.2  Application Behavior .............................. 412
     9.2.3  Multimedia Applications and Games ................. 420
     9.2.4  Benchmark Suites vs. Workload Models .............. 421
     9.2.5  Predictability .................................... 423
     9.2.6  Operating Systems ................................. 424
     9.2.7  Virtualization Workloads .......................... 425
9.3  File System and Storage Workloads ........................ 426
     9.3.1  The Distribution of File Sizes .................... 426
     9.3.2  File System Access Patterns ....................... 429
     9.3.3  Feedback .......................................... 431
     9.3.4  I/O Operations and Disk Layout .................... 432
     9.3.5  Parallel File Systems ............................. 434
9.4  Network Traffic and the Web .............................. 434
     9.4.1  Internet Traffic .................................. 434
     9.4.2  Email ............................................. 441
     9.4.3  Web Server Load ................................... 441
     9.4.4  User Sessions ..................................... 448
     9.4.5  E-Commerce ........................................ 449
     9.4.6  Search Engines .................................... 451
     9.4.7  Media and Streaming ............................... 457
     9.4.8  Peer-to-Peer File Sharing ......................... 459
     9.4.9  Online Gaming ..................................... 460
     9.4.10 Web Applications and Web 2.0 ...................... 461
     9.4.11 User Types ........................................ 462
     9.4.12 Feedback .......................................... 463
     9.4.13 Malicious Traffic ................................. 464
9.5  Data-Centric Workloads ................................... 465
     9.5.1  Database Systems .................................. 465
     9.5.2  Information Retrieval ............................. 468
     9.5.3  Big Data .......................................... 469
9.6  Parallel Jobs ............................................ 473
     9.6.1  Arrivals .......................................... 474
     9.6.2  Rigid Jobs ........................................ 475
     9.6.3  Speedup ........................................... 480
     9.6.4  Parallel Program Behavior ......................... 482
.    9.6.5  Load Manipulation and System Size ................. 485
     9.6.6  Grid Workloads .................................... 488

10   Summary and Outlook ...................................... 490

Appendix: Data Sources ........................................ 495

Bibliography .................................................. 501
Index ......................................................... 541


Архив выставки новых поступлений | Отечественные поступления | Иностранные поступления | Сиглы
 

[О библиотеке | Академгородок | Новости | Выставки | Ресурсы | Библиография | Партнеры | ИнфоЛоция | Поиск]
  © 1997–2024 Отделение ГПНТБ СО РАН  

Документ изменен: Wed Feb 27 14:28:56 2019. Размер: 18,383 bytes.
Посещение N 1688 c 27.09.2016