Jardine J.F. Local homotopy theory (New York, 2015). - ОГЛАВЛЕНИЕ / CONTENTS
Навигация

Архив выставки новых поступлений | Отечественные поступления | Иностранные поступления | Сиглы
ОбложкаJardine J.F. Local homotopy theory. - New York: Springer, 2015. - ix, 508 p.: ill. - (Springer monographs in mathematics). - Bibliogr.: p.499-503. - Ind.: p.505-508. - ISBN 978-1-4939-2299-4; ISSN 1439-7382
Шифр: (И/В18-J25) 02

 

Место хранения: 02 | Отделение ГПНТБ СО РАН | Новосибирск

Оглавление / Contents
 
1  Introduction ................................................. 1

Part I. Preliminaries
2  Homotopy Theory of Simplicial Sets .......................... 15
   2.1  Simplicial Sets ........................................ 15
   2.2  Model Structure for Simplicial Sets .................... 21
   2.3  Projective Model Structure for Diagrams ................ 25
3  Some Topos Theory ........................................... 29
   3.1  Grothendieck Topologies ................................ 31
   3.2  Exactness Properties ................................... 38
   3.3  Geometric Morphisms .................................... 42
   3.4  Points ................................................. 46
   3.5  Boolean Localization ................................... 49

Part II. Simplicial Presheaves and Simplicial Sheaves
4  Local Weak Equivalences ..................................... 59
   4.1  Local Weak Equivalences ................................ 60
   4.2  Local Fibrations ....................................... 69
   4.3  First Applications of Boolean Localization ............. 77
5  Local Model Structures ...................................... 91
   5.1  The Injective Model Structure .......................... 93
   5.2  Injective Fibrations .................................. 100
   5.3  Geometric and Site Morphisms .......................... 107
   5.4  Descent Theorems ...................................... 116
   5.5  Intermediate Model Structures ......................... 126
   5.6  Postnikov Sections and n-Types ........................ 131
6  Cocycles ................................................... 139
   6.1  Cocycle Categories .................................... 142
   6.2  The Verdier Hypercovering Theorem ..................... 150
7  Localization Theories ...................................... 159
   7.1  General Theory ........................................ 161
   7.2  Localization Theorems for Simplicial Presheaves ....... 174
   7.3  Properness ............................................ 185

Part III. Sheaf Cohomology Theory
8  Homology Sheaves and Cohomology Groups ..................... 191
   8.1  Chain Complexes ....................................... 194
   8.2  The Derived Category .................................. 202
   8.3  Abelian Sheaf Cohomology .............................. 207
   8.4  Products and Pairings ................................. 223
   8.5  Localized Chain Complexes ............................. 227
   8.6  Linear Simplicial Presheaves .......................... 235
9  Non-abelian Cohomology ..................................... 247
   9.1  Torsors ............................................... 251
   9.2  Stacks and Homotopy Theory ............................ 267
   9.3  Groupoids Enriched in Simplicial Sets ................. 280
   9.4  Presheaves of Groupoids Enriched in Simplicial Sets ... 304
   9.5  Extensions and Gerbes ................................. 318

Part IV. Stable Homotopy Theory
10 Spectra and T-spectra ...................................... 337
   10.1 Presheaves of Spectra ................................. 344
   10.2 T-spectra and Localization ............................ 360
   10.3 Stable Model Structures for T-spectra ................. 368
   10.4 Shifts and Suspensions ................................ 383
   10.5 Fibre and Cofibre Sequences ........................... 391
   10.6 Postnikov Sections and Slice Filtrations .............. 405
   10.7 T-Complexes ........................................... 412
11 Symmetric T-spectra ........................................ 431
   11.1 Symmetric Spaces ...................................... 436
   11.2 First Model Structures ................................ 441
   11.3 Localized Model Structures ............................ 447
   11.4 Stable Homotopy Theory of Symmetric Spectra ........... 451
   11.5 Equivalence of Stable Categories ...................... 461
   11.6 The Smash Product ..................................... 472
   11.7 Symmetric T-complexes ................................. 483

References .................................................... 499
Index ......................................................... 505


Архив выставки новых поступлений | Отечественные поступления | Иностранные поступления | Сиглы
 

[О библиотеке | Академгородок | Новости | Выставки | Ресурсы | Библиография | Партнеры | ИнфоЛоция | Поиск]
  © 1997–2024 Отделение ГПНТБ СО РАН  

Документ изменен: Wed Feb 27 14:28:54 2019. Размер: 7,962 bytes.
Посещение N 1469 c 13.09.2016