Pons O. Analysis and differential equations (Singapore, 2015). - ОГЛАВЛЕНИЕ / CONTENTS
Навигация

Архив выставки новых поступлений | Отечественные поступления | Иностранные поступления | Сиглы
ОбложкаPons O. Analysis and differential equations. - Singapore: World scientific, 2015. - ix, 244 p.: ill. - Bibliogr.: p.241-242. - Ind.: p.243-244. - ISBN 978-981-4635-95-0
Шифр: (И/В16-P82) 02

 

Место хранения: 02 | Отделение ГПНТБ СО РАН | Новосибирск

Оглавление / Contents
 
Preface ......................................................... v
1  Introduction ................................................. 1
   1.1  Differential equations .................................. 1
   1.2  Second order differential equations ..................... 3
   1.3  Differential equations for functions on fig.1p .............. 9
   1.4  Multidimensional differential equations ................ 15
   1.5  Overview ............................................... 19
   1.6  Exercises .............................................. 20
2  Expansions with orthogonal polynomials ...................... 23
   2.1  Introduction ........................................... 23
   2.2  Laguerre's polynomials ................................. 25
   2.3  Hermite's polynomials .................................. 30
   2.4  Legendre's polynomials ................................. 38
   2.5  Generalizations ........................................ 42
   2.6  Bilinear functions ..................................... 44
   2.7  Hermite's polynomials in fig.12 ............................ 47
   2.8  Legendre's polynomials in fig.12 ........................... 50
   2.9  Exercises .............................................. 55
3  Differential and integral calculus .......................... 57
   3.1  Differentiability of functions ......................... 57
   3.2  Maximum and minimum of functions ....................... 59
   3.3  Euler-Lagrange conditions .............................. 63
   3.4  Integral calculus ...................................... 67
   3.5  Partial derivatives of elliptic functions .............. 71
   3.6  Applications ........................................... 80
   3.7  Exercises .............................................. 87
4  Linear differential equations ............................... 89
   4.1  First order differential equations in fig.1+ ............... 89
   4.2  Second order linear differential equations in fig.1+ ....... 95
   4.3  Sturm-Liouville second order differential equations ... 108
   4.4  Applications .......................................... 112
   4.5  Nonlinear differential equations ...................... 113
   4.6  Differential equations of higher orders ............... 119
   4.7  Exercises ............................................. 122
5  Linear differential equations in fig.1P ........................ 125
   5.1  Introduction .......................................... 125
   5.2  Laplace's differential equation ....................... 130
   5.3  Potential equations ................................... 132
   5.4  Heat conduction equations ............................. 137
   5.5  Wave differential equations ........................... 146
   5.6  Elasticity equations .................................. 154
   5.7  Exercises ............................................. 156
6  Partial differential equations ............................. 157
   6.1  Partial differential equations in fig.12 .................. 157
   6.2  First order linear partial differential equations ..... 159
   6.3  Second order linear partial differential equations .... 170
   6.4  Multidimensional differential equations ............... 171
   6.5  Lotka-Volterra equations .............................. 177
   6.6  Birth-and-death differential equations ................ 181
   6.7  Poincare-Lorenz differential system ................... 184
   6.8  Exercises ............................................. 187
7  Special functions .......................................... 189
   7.1  Eulerian functions .................................... 189
   7.2  Airy function ......................................... 196
   7.3  Bessel's function ..................................... 198
   7.4  Boyd's function ....................................... 199
   7.5  Hermite's function .................................... 199
   7.6  Laguerre's functions .................................. 201
   7.7  Hydrogen atom equation and others ..................... 202
   7.8  Exercises ............................................. 203
8  Solutions .................................................. 205
   8.1  Integral and differential calculus .................... 205
   8.2  Orthogonal polynomials ................................ 211
   8.3  Calculus and optimization ............................. 214
   8.4  Linear differential equations ......................... 220
   8.5  Linear differential equations in fig.1P ................... 226
   8.6  Partial differential equations ........................ 228
   8.7  Special functions ..................................... 231
   8.8  Programs .............................................. 235
Bibliography .................................................. 241
Index ......................................................... 243


Архив выставки новых поступлений | Отечественные поступления | Иностранные поступления | Сиглы
 

[О библиотеке | Академгородок | Новости | Выставки | Ресурсы | Библиография | Партнеры | ИнфоЛоция | Поиск]
  © 1997–2024 Отделение ГПНТБ СО РАН  

Документ изменен: Wed Feb 27 14:28:40 2019. Размер: 8,931 bytes.
Посещение N 1439 c 14.06.2016