Haase M. Functional analysis: an elementary introduction (Providence, 2014). - ОГЛАВЛЕНИЕ / CONTENTS
Навигация

Архив выставки новых поступлений | Отечественные поступления | Иностранные поступления | Сиглы
ОбложкаHaase M. Functional analysis: an elementary introduction. - Providence: American mathematical society, 2014. - xviii, 372 p.: ill. - (Graduate studies in mathematics; vol.156). - Incl. bibl. ref. and ind. - Auth. ind.: p.371-372. - ISBN 978-0-8218-9171-1
Шифр: (И/В16-Н11) 02

 

Место хранения: 02 | Отделение ГПНТБ СО РАН | Новосибирск

Оглавление / Contents
 
Preface ...................................................... xiii

Chapter 1  Inner Product Spaces ................................. 1
§1.1  Inner Products ............................................ 3
§1.2  Orthogonality ............................................. 6
§1.3  The Trigonometric System ................................. 10
      Exercises ................................................ 11

Chapter 2  Normed Spaces ....................................... 15
§2.1  The Cauchy-Schwarz Inequality and the Space ℓ2 ........... 15
§2.2  Norms .................................................... 18
§2.3  Bounded Linear Mappings .................................. 21
§2.4  Basic Examples ........................................... 23
§2.5  *The ℓρ-Spaces (1 ≤ p < ∞) ............................... 28
      Exercises ................................................ 31

Chapter 3  Distance and Approximation .......................... 37
§3.1  Metric Spaces ............................................ 37
§3.2  Convergence .............................................. 39
§3.3  Uniform, Pointwise and (Square) Mean Convergence ......... 41
§3.4  The Closure of a Subset .................................. 47
      Exercises ................................................ 50

Chapter 4  Continuity and Compactness .......................... 55
§4.1  Open and Closed Sets ..................................... 55
§4.2  Continuity ............................................... 58
§4.3  Sequential Compactness ................................... 64
§4.4  Equivalence of Norms ..................................... 66
§4.5  Separability and General Compactness ..................... 71
      Exercises ................................................ 74

Chapter 5  Banach Spaces ....................................... 79
§5.1  Cauchy Sequences and Completeness ........................ 79
§5.2  Hilbert Spaces ........................................... 81
§5.3  Banach Spaces ............................................ 84
§5.4  Series in Banach Spaces .................................. 86
      Exercises ................................................ 88

Chapter 6  The Contraction Principle ........................... 93
§6.1  Banach's Contraction Principle ........................... 94
§6.2  Application: Ordinary Differential Equations ............. 95
§6.3  Application: Google's PageRank ........................... 98
§6.4  Application: The Inverse Mapping Theorem ................ 100
      Exercises ............................................... 104

Chapter 7  The Lebesgue Spaces ................................ 107
§7.1  The Lebesgue Measure .................................... 110
§7.2  The Lebesgue Integral and the Space L1(X) ............... 113
§7.3  Null Sets ............................................... 115
§7.4  The Dominated Convergence Theorem ....................... 118
§7.5  The Spaces LP(X) with 1 ≤ p ≤ ∞ ......................... 121
      Advice for the Reader ................................... 125
      Exercises ............................................... 126

Chapter 8  Hilbert Space Fundamentals ......................... 129
§8.1  Best Approximations ..................................... 129
§8.2  Orthogonal Projections .................................. 133
§8.3  The Riesz-Frechet Theorem ............................... 135
§8.4  Orthogonal Series and Abstract Fourier Expansions ....... 137
      Exercises ............................................... 141

Chapter 9  Approximation Theory and Fourier Analysis .......... 147
§9.1  Lebesgue's Proof of Weierstrass' Theorem ................ 149
§9.2  Truncation .............................................. 151
§9.3  Classical Fourier Series ................................ 156
§9.4  Fourier Coefficients of L1-Functions .................... 161
§9.5  The Riemann-Lebesgue Lemma .............................. 162
§9.6  The Strong Convergence Lemma and Fejer's Theorem ........ 164
§9.7  Extension of a Bounded Linear Mapping ................... 168
Exercises ..................................................... 172

Chapter 10  Sobolev Spaces and the Poisson Problem ............ 177
§10.1 Weak Derivatives ........................................ 177
§10.2 The Fundamental Theorem of Calculus ..................... 179
§10.3 Sobolev Spaces .......................................... 182
§10.4 The Variational Method for the Poisson Problem .......... 184
§10.5 Poisson's Problem in Higher Dimensions .................. 187
      Exercises ............................................... 188

Chapter 11 Operator Theory I .................................. 193
§11.1 Integral Operators and Fubini's Theorem ................. 193
§11.2 The Dirichlet Laplacian and Hilbert-Schmidt Operators ... 196
§11.3 Approximation of Operators .............................. 199
§11.4 The Neumann Series ...................................... 202
      Exercises ............................................... 205

Chapter 12 Operator Theory II ................................. 211
§12.1 Compact Operators ....................................... 211
§12.2 Adjoints of Hilbert Space Operators ..................... 216
§12.3 The Lax-Milgram Theorem ................................. 219
§12.4 Abstract Hilbert-Schmidt Operators ...................... 221
      Exercises ............................................... 226

Chapter 13  Spectral Theory of Compact Self-Adjoint
Operators ..................................................... 231
§13.1 Approximate Eigenvalues ................................. 231
§13.2 Self-Adjoint Operators .................................. 234
§13.3 The Spectral Theorem .................................... 236
§13.4 The General Spectral Theorem ............................ 240
      Exercises ............................................... 241

Chapter 14 Applications of the Spectral Theorem ............... 247
§14.1 The Dirichlet Laplacian ................................. 247
§14.2 The Schrodinger Operator ................................ 249
§14.3 An Evolution Equation ................................... 252
§14.4 The Norm of the Integration Operator .................... 254
§14.5 The Best Constant in the Poincare Inequality ............ 256
      Exercises ............................................... 257

Chapter 15 Baire's Theorem and Its Consequences ............... 261
§15.1 Baire's Theorem ......................................... 261
§15.2 The Uniform Boundedness Principle ....................... 263
§15.3 Nonconvergence of Fourier Series ........................ 266
§15.4 The Open Mapping Theorem ................................ 267
§15.5 Applications with a Look Back ........................... 271
      Exercises ............................................... 274

Chapter 16 Duality and the Hahn-Banach Theorem ................ 277
§16.1 Extending Linear Functionals ............................ 278
§16.2 Elementary Duality Theory ............................... 284
§16.3 Identification of Dual Spaces ........................... 289
§16.4 The Riesz Representation Theorem ........................ 295
      Exercises ............................................... 299
      Historical Remarks ...................................... 305

Appendix A Background ......................................... 311
§A.l Sequences and Subsequences ............................... 311
§A.2 Equivalence Relations .................................... 312
§A.3 Ordered Sets ............................................. 314
§A.4 Countable and Uncountable Sets ........................... 316
§A.5 Real Numbers ............................................. 316
§A.6 Complex Numbers .......................................... 321
§A.7 Linear Algebra ........................................... 322
§A.8 Set-theoretic Notions .................................... 329

Appendix B The Completion of a Metric Space ................... 333
§B.l Uniqueness of a Completion ............................... 334
§B.2 Existence of a Completion ................................ 335
§B.3 The Completion of a Normed Space ......................... 337
     Exercises ................................................ 338

Appendix C Bernstein's Proof of Weierstrass' Theorem .......... 339

Appendix D Smooth Cutoff Functions ............................ 343

Appendix E Some Topics from Fourier Analysis .................. 345
§E.l Plancherel's Identity .................................... 346
§E.2 The Fourier Inversion Formula ............................ 347
§E.3 The Carlson-Beurling Inequality .......................... 348
     Exercises ................................................ 349

Appendix F General Orthonormal Systems ........................ 351
§F.l Unconditional Convergence ................................ 351
§F.2 Uncountable Orthonormal Bases ............................ 353

Bibliography .................................................. 355
Symbol Index .................................................. 359
Subject Index ................................................. 361
Author Index .................................................. 371


Архив выставки новых поступлений | Отечественные поступления | Иностранные поступления | Сиглы
 

[О библиотеке | Академгородок | Новости | Выставки | Ресурсы | Библиография | Партнеры | ИнфоЛоция | Поиск]
  © 1997–2024 Отделение ГПНТБ СО РАН  

Документ изменен: Wed Feb 27 14:28:38 2019. Размер: 13,472 bytes.
Посещение N 1488 c 29.05.2016