De Vries J. Topological dynamical systems: an introduction to the dynamics of continuous mappings (Berlin; Boston, 2014). - ОГЛАВЛЕНИЕ / CONTENTS
Навигация

Архив выставки новых поступлений | Отечественные поступления | Иностранные поступления | Сиглы
ОбложкаDe Vries J. Topological dynamical systems: an introduction to the dynamics of continuous mappings. - Berlin; Boston: De Gruyter, 2014. - xv, 498 p.: ill. - (De Gruyter studies in mathematics; 59). - Bibliogr.: p.481-484. - Ind.: p.485-498. - ISBN 978-3-11-034073-0; ISSN 0179-0986
Шифр: (И/B18-V96) 02

 

Место хранения: 02 | Отделение ГПНТБ СО РАН | Новосибирск

Оглавление / Contents
 
Preface ......................................................... v
Notation ....................................................... ix
0  Introduction ................................................. 1
   0.1  Definition and a (very brief) historical overview ....... 1
   0.2  Continuous vs. discrete time ............................ 3
   0.3  The dynamical systems point of view ..................... 7
   0.4  Examples ................................................ 9
1  Basic notions ............................................... 17
   1.1  Invariant and periodic points .......................... 17
   1.2  Invariant sets ......................................... 23
   1.3  Transitivity ........................................... 28
   1.4  Limit sets ............................................. 33
   1.5  Topological conjugacy and factor mappings .............. 35
   1.6  Equicontinuity and weak mixing ......................... 44
   1.7  Miscellaneous examples ................................. 57
2  Dynamical systems on the real line .......................... 73
   2.1  Graphical iteration .................................... 73
   2.2  Existence of periodic orbits ........................... 80
   2.3  The truncated tent map ................................. 84
   2.4  The double of a mapping ................................ 87
   2.5  The Markov graph of a periodic orbit in an interval .... 91
   2.6  Transitivity of mappings of an interval ............... 101
3  Limit behaviour ............................................ 117
   3.1  Limit sets and attraction ............................. 117
   3.2  Stability ............................................. 126
   3.3  Stability and attraction for periodic orbits .......... 132
   3.4  Asymptotic stability in locally compact spaces ........ 143
   3.5  The structure of (asymptotically) stable sets ......... 153
4  Recurrent behaviour ........................................ 165
   4.1  Recurrent points ...................................... 165
   4.2  Almost periodic points and minimal orbit closures ..... 169
   4.3  Non-wandering points .................................. 175
   4.4  Chain-recurrence ...................................... 182
   4.5  Asymptotic stability and basic sets ................... 197
5  Shift systems .............................................. 218
   5.1  Notation and terminology .............................. 218
   5.2  The shift mapping ..................................... 223
   5.3  Shift spaces .......................................... 226
   5.4  Factor maps ........................................... 236
   5.5  Subshifts and graphs .................................. 244
   5.6  Recurrence, almost periodicity and mixing ............. 253
6  Symbolic representations ................................... 282
   6.1  Topological partitions ................................ 282
   6.2  Expansive systems ..................................... 293
   6.3  Applications .......................................... 302
7  Erratic behaviour .......................................... 325
   7.1  Stability revisited ................................... 325
   7.2  Chaos(1): sensitive systems ........................... 336
   7.3  Chaos(2): scrambled sets .............................. 342
   7.4  Horseshoes for interval maps .......................... 355
   7.5  Existence of a horseshoe .............................. 365
8  Topological entropy ........................................ 378
   8.1  The definition ........................................ 378
   8.2  Independence of the metric; factor maps ............... 387
   8.3  Maps on intervals and circles ......................... 391
   8.4  The definition with covers ............................ 394
   8.5  Miscellaneous results ................................. 402
   8.6  Positive entropy and horseshoes for interval maps ..... 406
A  Topology ................................................... 423
   A.l  Elementary notions .................................... 423
   A.2  Compactness ........................................... 426
   A.3  Continuous mappings ................................... 428
   A.4  Convergence ........................................... 430
   A.5  Subspaces, products and quotients ..................... 432
   A.6  Connectedness ......................................... 434
   A.7  Metric spaces ......................................... 437
   A.8  Baire category ........................................ 444
   A.9  Irreducible mappings .................................. 446
   A.10 Miscellaneous results ................................. 449
В  The Cantor set ............................................. 453
   B.l  The construction ...................................... 453
   B.2  Proof of Brouwer's Theorem ............................ 456
   B.3  Cantor spaces ......................................... 461
С  Hints to th e Exercises .................................... 465

Literature .................................................... 481

Index ......................................................... 485


Архив выставки новых поступлений | Отечественные поступления | Иностранные поступления | Сиглы
 

[О библиотеке | Академгородок | Новости | Выставки | Ресурсы | Библиография | Партнеры | ИнфоЛоция | Поиск]
  © 1997–2024 Отделение ГПНТБ СО РАН  

Документ изменен: Wed Feb 27 14:28:38 2019. Размер: 9,128 bytes.
Посещение N 1640 c 29.05.2016